1,957 research outputs found

    Alain Milhou (1944-2001) in memoriam

    Get PDF

    Spin-resolved electronic response to the phase transition in MoTe2_2

    Get PDF
    The semimetal MoTe2_2 is studied by spin- and angle- resolved photoemission spectroscopy to probe the detailed electronic structure underlying its broad range of response behavior. A novel spin-texture is uncovered in the bulk Fermi surface of the non-centrosymmetric structural phase that is consistent with first-principles calculations. The spin-texture is three-dimensional, both in terms of momentum dependence and spin-orientation, and is not completely suppressed above the centrosymmetry-breaking transition temperature. Two types of surface Fermi arc are found to persist well above the transition temperature. The appearance of a large Fermi arc depends strongly on thermal history, and the electron quasiparticle lifetimes are greatly enhanced in the initial cooling. The results indicate that polar instability with strong electron-lattice interactions exists near the surface when the bulk is largely in a centrosymmetric phase

    Quasilinear hyperbolic Fuchsian systems and AVTD behavior in T2-symmetric vacuum spacetimes

    Full text link
    We set up the singular initial value problem for quasilinear hyperbolic Fuchsian systems of first order and establish an existence and uniqueness theory for this problem with smooth data and smooth coefficients (and with even lower regularity). We apply this theory in order to show the existence of smooth (generally not analytic) T2-symmetric solutions to the vacuum Einstein equations, which exhibit AVTD (asymptotically velocity term dominated) behavior in the neighborhood of their singularities and are polarized or half-polarized.Comment: 78 page

    Tailoring the atomic structure of graphene nanoribbons by STM lithography

    Full text link
    The practical realization of nano-scale electronics faces two major challenges: the precise engineering of the building blocks and their assembly into functional circuits. In spite of the exceptional electronic properties of carbon nanotubes only basic demonstration-devices have been realized by time-consuming processes. This is mainly due to the lack of selective growth and reliable assembly processes for nanotubes. However, graphene offers an attractive alternative. Here we report the patterning of graphene nanoribbons (GNRs) and bent junctions with nanometer precision, well-defined widths and predetermined crystallographic orientations allowing us to fully engineer their electronic structure using scanning tunneling microscope (STM) lithography. The atomic structure and electronic properties of the ribbons have been investigated by STM and tunneling spectroscopy measurements. Opening of confinement gaps up to 0.5 eV, allowing room temperature operation of GNR-based devices, is reported. This method avoids the difficulties of assembling nano-scale components and allows the realization of complete integrated circuits, operating as room temperature ballistic electronic devices.Comment: 8 pages text, 5 figures, Nature Nanotechnology, in pres

    Milli-arcsecond astrophysics with VSI, the VLTI spectro-imager in the ELT era

    Get PDF
    Nowadays, compact sources like surfaces of nearby stars, circumstellar environments of stars from early stages to the most evolved ones and surroundings of active galactic nuclei can be investigated at milli-arcsecond scales only with the VLT in its interferometric mode. We propose a spectro-imager, named VSI (VLTI spectro-imager), which is capable to probe these sources both over spatial and spectral scales in the near-infrared domain. This instrument will provide information complementary to what is obtained at the same time with ALMA at different wavelengths and the extreme large telescopes.Comment: 8 pages. To be published in the proceedings of the ESO workshop "Science with the VLT in the ELT Era", held in Garching (Germany) on 8-12 October 2007, A. Moorwood edito

    Increasing the imaging capabilities of the VLTI using integrated optics

    Get PDF
    Several scientific topics linked to the observation of extended structures around astrophysical sources (dust torus around AGN, disks around young stars, envelopes around AGBs) require imaging capability with milli-arcsecond spatial resolution. The current VLTI instruments, AMBER and MIDI, will provide in the coming months the required high angular resolution, yet without actual imaging. As a rule of thumb, the image quality accessible with an optical interferometer is directly related to the number of telescopes used simultaneously: the more the apertures, the better and the faster the reconstruction of the image. We propose an instrument concept to achieve interferometric combination of N telescopes (4 ≤ N ≤ 8) thanks to planar optics technology: 4 x 8-m telescopes in the short term and/or 8 x 1.8-m telescopes in the long term. The foreseen image reconstruction quality in the visible and/or in the near infrared will be equivalent to the one achieved with millimeter radio interferometers. Achievable spatial resolution will be better than the one foreseen with ALMA. This instrument would be able to acquire routinely 1 mas resolution images. A 13 to 20 magnitude sensitivity in spectral ranges from 0.6 to 2.5 μm is expected depending on the choice of the phase referencing guide source. High dynamic range, even on faint objects, is achievable thanks to the high accuracy provided by integrated optics for visibility amplitude and phase measurements. Based on recent validations of integrated optics presented here an imaging instrument concept can be proposed. The results obtained using the VLTI facilities give a demonstration of the potential of the proposed technique

    Increasing the imaging capabilities of the VLTI using integrated optics

    Get PDF
    Several scientific topics linked to the observation of extended structures around astrophysical sources (dust torus around AGN, disks around young stars, envelopes around AGBs) require imaging capability with milli-arcsecond spatial resolution. The current VLTI instruments, AMBER and MIDI, will provide in the coming months the required high angular resolution, yet without actual imaging. As a rule of thumb, the image quality accessible with an optical interferometer is directly related to the number of telescopes used simultaneously: the more the apertures, the better and the faster the reconstruction of the image. We propose an instrument concept to achieve interferometric combination of N telescopes (4 ≤ N ≤ 8) thanks to planar optics technology: 4 x 8-m telescopes in the short term and/or 8 x 1.8-m telescopes in the long term. The foreseen image reconstruction quality in the visible and/or in the near infrared will be equivalent to the one achieved with millimeter radio interferometers. Achievable spatial resolution will be better than the one foreseen with ALMA. This instrument would be able to acquire routinely 1 mas resolution images. A 13 to 20 magnitude sensitivity in spectral ranges from 0.6 to 2.5 μm is expected depending on the choice of the phase referencing guide source. High dynamic range, even on faint objects, is achievable thanks to the high accuracy provided by integrated optics for visibility amplitude and phase measurements. Based on recent validations of integrated optics presented here an imaging instrument concept can be proposed. The results obtained using the VLTI facilities give a demonstration of the potential of the proposed technique

    RNA Interference and Single Particle Tracking Analysis of Hepatitis C Virus Endocytosis

    Get PDF
    Hepatitis C virus (HCV) enters hepatocytes following a complex set of receptor interactions, culminating in internalization via clathrin-mediated endocytosis. However, aside from receptors, little is known about the cellular molecular requirements for infectious HCV entry. Therefore, we analyzed a siRNA library that targets 140 cellular membrane trafficking genes to identify host genes required for infectious HCV production and HCV pseudoparticle entry. This approach identified 16 host cofactors of HCV entry that function primarily in clathrin-mediated endocytosis, including components of the clathrin endocytosis machinery, actin polymerization, receptor internalization and sorting, and endosomal acidification. We next developed single particle tracking analysis of highly infectious fluorescent HCV particles to examine the co-trafficking of HCV virions with cellular cofactors of endocytosis. We observe multiple, sequential interactions of HCV virions with the actin cytoskeleton, including retraction along filopodia, actin nucleation during internalization, and migration of internalized particles along actin stress fibers. HCV co-localizes with clathrin and the ubiquitin ligase c-Cbl prior to internalization. Entering HCV particles are associated with the receptor molecules CD81 and the tight junction protein, claudin-1; however, HCV-claudin-1 interactions were not restricted to Huh-7.5 cell-cell junctions. Surprisingly, HCV internalization generally occurred outside of Huh-7.5 cell-cell junctions, which may reflect the poorly polarized nature of current HCV cell culture models. Following internalization, HCV particles transport with GFP-Rab5a positive endosomes, which is consistent with trafficking to the early endosome. This study presents technical advances for imaging HCV entry, in addition to identifying new host cofactors of HCV infection, some of which may be antiviral targets

    GRAVITY: observing the universe in motion

    Get PDF
    GRAVITY is the second generation VeryLarge Telescope Interferometer instrument for precision narrow-angle as -trometry and interferometric imaging.With its fibre-fed integrated optics,wavefront sensors, fringe tracker, beamstabilisation and a novel metrologyconcept, GRAVITY will push the sensitivity and accuracy of astrometry andinterferometric imaging far beyond whatis offered today. Providing precisionastrometry of order 10 microarcseconds,and imaging with 4-milliarcsecondresolution, GRAVITY will revolutionisedynamical measurements of celestialobjects: it will probe physics close tothe event horizon of the Galactic Centreblack hole; unambiguously detect andmeasure the masses of black holesin massive star clusters throughout theMilky Way; uncover the details of massaccretion and jets in young stellarobjects and active galactic nuclei; andprobe the motion of binary stars, exoplanets and young stellar discs. Theinstrument capabilities of GRAVITY areoutlined and the science opportunitiesthat will open up are summarised
    • …
    corecore