30 research outputs found

    Colibactin DNA-damage signature indicates mutational impact in colorectal cancer

    Get PDF
    The mucosal epithelium is a common target of damage by chronic bacterial infections and the accompanying toxins, and most cancers originate from this tissue. We investigated whether colibactin, a potent genotoxin(1) associated with certain strains of Escherichia coli(2), creates a specific DNA-damage signature in infected human colorectal cells. Notably, the genomic contexts of colibactin-induced DNA double-strand breaks were enriched for an AT-rich hexameric sequence motif, associated with distinct DNA-shape characteristics. A survey of somatic mutations at colibactin target sites of several thousand cancer genomes revealed notable enrichment of this motif in colorectal cancers. Moreover, the exact double-strand-break loci corresponded with mutational hot spots in cancer genomes, reminiscent of a trinucleotide signature previously identified in healthy colorectal epithelial cells(3). The present study provides evidence for the etiological role of colibactin in human cancer. Identification of a DNA-damage signature induced by colibactin, a toxin expressed by some strains of Escherichia coli, is enriched in human colorectal cancers.Peer reviewe

    Integrated Phosphoproteome and Transcriptome Analysis Reveals Chlamydia-Induced Epithelial-to-Mesenchymal Transition in Host Cells

    Get PDF
    Summary: Chlamydia trachomatis (Ctr) causes a range of infectious diseases and is epidemiologically associated with cervical and ovarian cancers. To obtain a panoramic view of Ctr-induced signaling, we performed global phosphoproteomic and transcriptomic analyses. We identified numerous Ctr phosphoproteins and Ctr-regulated host phosphoproteins. Bioinformatics analysis revealed that these proteins were predominantly related to transcription regulation, cellular growth, proliferation, and cytoskeleton organization. In silico kinase substrate motif analysis revealed that MAPK and CDK were the most overrepresented upstream kinases for upregulated phosphosites. Several of the regulated host phosphoproteins were transcription factors, including ETS1 and ERF, that are downstream targets of MAPK. Functional analysis of phosphoproteome and transcriptome data confirmed their involvement in epithelial-to-mesenchymal transition (EMT), a phenotype that was validated in infected cells, along with the essential role of ERK1/2, ETS1, and ERF for Ctr replication. Our data reveal the extent of Ctr-induced signaling and provide insights into its pro-carcinogenic potential. : Zadora et al. performed an integrated global phosphoproteomic and transcriptomic analysis, revealing a comprehensive map of Chlamydia-induced host cell signaling and identifying transcription factors ETS1 and ERF, which drive epithelial-to-mesenchymal transition. These insights provide mechanistic clues to Chlamydia pathogenesis and serve as an important resource for future studies. Keywords: Chlamydia trachomatis, signaling, human papillomavirus, transcription factors, cervical cancer, ovarian cancer, human primary cell

    Efficacy of two antiseptic regimens on skin colonization of insertion sites for two different catheter types: a randomized, clinical trial

    No full text
    Purpose Catheter-related bloodstream infections affect patients in surgical and intensive care settings worldwide, causing complications, aggravation of existing symptoms and increased length of stay. The trial aimed at comparing two registered skin antiseptics with respect to their residual and therefore infection-preventing effects. Methods In a parallel, monocentric, prospective, triple-blind, randomized trial the difference in bacterial recolonization of catheter skin sites in central venous (CVC) and epidural catheters (EC) was investigated by comparing two alcoholic-based skin disinfectants. Patients receiving planned surgeries or intensive care were eligible for the trial. Those in the trial group received skin disinfection with the additive octenidine dihydrochloride (OCT) (n = 51), those in the control group were treated with benzalkonium chloride as additive (BAC) (n = 59) prior to catheter insertion. Randomization was carried out by assigning patients to groups week-wise. Endpoints of the investigation were skin colonization of the catheter site counted in colony forming units per swab at three time points: (1) prior to catheter insertion, on untreated skin; (2) directly after catheter insertion, prior to sterile coverage; (3) 48 h after catheter insertion. The hypothesis was tested by a Wilcoxon test with a two-sided alpha = 5 %. Results From second to third swab, recolonization of the catheter-surrounding skin was significantly lower in the trial group for both sorts of catheters: delta 2-3 OCT group: 0.72 (95 % CI: 0.42; 1.02); delta 2-3 BAC group: 1.97 (95 % CI: 1.45; 2.50); p < 0.001. None of the patients enrolled developed a catheter-related blood stream infection (CRBSI) during follow-up. Conclusions Previous studies have shown that skin colonization is strongly associated with the occurrence of CRBSI. This randomized controlled trial supports the observations made in previous trials that octenidine dihydrochloride in disinfectants is more effective than agents containing other additives with regard to skin recolonization surrounding CVC and EC insertion sites. Therefore, it is likely to also reduce the risk of CRBSI in these patient groups. The trial was approved by the North Rhine Medical Association in July 2014 (application-no.: 2014222)

    Giant cell glioblastoma is associated with altered aurora b expression and concomitant p53 mutation

    Full text link
    Giant cell glioblastoma (gcGB), a subtype of GB, is characterized by the presence of numerous multinucleated giant cells. The prognosis for gcGB is poor, but it may have a better clinical outcome compared with classic GB. The molecular alterations that lead to the multinucleated cell phenotype of gcGB have not been elucidated. Giant cell GB has a higher frequency of the tumor suppressor protein p53 mutations than GB, however, and a role for the mitotic Aurora B kinase has been suggested. We analyzed Aurora B expression in gcGB (n = 28) and GB (n = 54) patient tumor samples by immunohistochemistry; 17 gcGB and 22 GB samples were analyzed at the DNA and mRNA levels. No mutations in the Aurora B gene (AURKB) were found, but its mRNA and protein levels were significantly higher in gcGB than in GB. Fifty-nine percent of gcGB samples but only 18% of the GB samples showed p53 mutations. Ectopic overexpression of Aurora B induced a significant increase inthe proportion of multinucleated cells in p53 mutant U373-MG, but not in p53 wild-type U87-MG, glioma cells. RNAi of p53 in U87-MG cells led to an increase in the fraction of multinucleated cells that was further augmented by ectopic overexpression of Aurora B. These results suggest that loss of p53 function and dysregulated Aurora B protein levels might represent factors that drive the development of multinucleated cells in gcGB

    A novel human gastric primary cell culture system for modelling Helicobacter pylori infection in vitro

    No full text
    Background and aims: Helicobacter pylori is the causative agent of gastric diseases and the main risk factor in the development of gastric adenocarcinoma. In vitro studies with this bacterial pathogen largely rely on the use of transformed cell lines as infection model. However, this approach is intrinsically artificial and especially inappropriate when it comes to investigating the mechanisms of cancerogenesis. Moreover, common cell lines are often defective in crucial signalling pathways relevant to infection and cancer. A long-lived primary cell system would be preferable in order to better approximate the human in vivo situation. Methods: Gastric glands were isolated from healthy human stomach tissue and grown in Matrigel containing media supplemented with various growth factors, developmental regulators and apoptosis inhibitors to generate long-lasting normal epithelial cell cultures. Results: Culture conditions were developed which support the formation and quasi-indefinite growth of three dimensional (3D) spheroids derived from various sites of the human stomach. Spheroids could be differentiated to gastric organoids after withdrawal of Wnt3A and Rspondin1 from the medium. The 3D cultures exhibit typical morphological features of human stomach tissue. Transfer of sheared spheroids into 2D culture led to the formation of dense planar cultures of polarised epithelial cells serving as a suitable in vitro model of H. pylori infection. Conclusions: A robust and quasi-immortal 3D organoid model has been established, which is considered instrumental for future research aimed to understand the underlying mechanisms of infection, mucosal immunity and cancer of the human stomach

    Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network

    Full text link
    PURPOSE: The prognostic value of genetic alterations characteristic of glioblastoma in patients treated according to present standards of care is unclear. PATIENTS AND METHODS: Three hundred one patients with glioblastoma were prospectively recruited between October 2004 and December 2006 at the clinical centers of the German Glioma Network. Two hundred fifty-eight patients had radiotherapy, 199 patients had temozolomide, 189 had both, and seven had another chemotherapy as the initial treatment. The tumors were investigated for TP53 mutation, p53 immunoreactivity, epidermal growth factor receptor, cyclin-dependent kinase CDK 4 or murine double minute 2 amplification, CDKN2A homozygous deletion, allelic losses on chromosome arms 1p, 9p, 10q, and 19q, O(6)-methylguanine methyltransferase (MGMT) promoter methylation, and isocitrate dehydrogenase 1 (IDH1) mutations. RESULTS: Median progression-free (PFS) and overall survival (OS) were 6.8 and 12.5 months. Multivariate analysis revealed younger age, higher performance score, MGMT promoter methylation, and temozolomide radiochemotherapy as independent factors associated with longer OS. MGMT promoter methylation was associated with longer PFS (relative risk [RR], 0.5; 95% CI, 0.38 to 0.68; P < .001) and OS (RR, 0.39; 95% CI, 0.28 to 0.54; P < .001) in patients receiving temozolomide. IDH1 mutations were associated with prolonged PFS (RR, 0.42; 95% CI, 0.19 to 0.91; P = .028) and a trend for prolonged OS (RR, 0.43; 95% CI, 0.15 to 1.19; P = .10). No other molecular factor was associated with outcome. CONCLUSION: Molecular changes associated with gliomagenesis do not predict response to therapy in glioblastoma patients managed according to current standards of care. MGMT promoter methylation and IDH1 mutational status allow for stratification into prognostically distinct subgroups
    corecore