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pathogenesis and serve as an important
resource for future studies.
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SUMMARY

Chlamydia trachomatis (Ctr) causes a range of infec-
tious diseases and is epidemiologically associated
with cervical and ovarian cancers. To obtain a pano-
ramic view of Ctr-induced signaling, we performed
global phosphoproteomic and transcriptomic ana-
lyses. We identified numerous Ctr phosphoproteins
and Ctr-regulated host phosphoproteins. Bioinfor-
matics analysis revealed that these proteins were
predominantly related to transcription regulation,
cellular growth, proliferation, and cytoskeleton orga-
nization. In silico kinase substrate motif analysis
revealed that MAPK and CDK were the most
overrepresented upstream kinases for upregulated
phosphosites. Several of the regulated host phos-
phoproteins were transcription factors, including
ETS1 and ERF, that are downstream targets of
MAPK. Functional analysis of phosphoproteome
and transcriptome data confirmed their involvement
in epithelial-to-mesenchymal transition (EMT), a
phenotype that was validated in infected cells, along
with the essential role of ERK1/2, ETS1, and ERF
for Ctr replication. Our data reveal the extent of
Ctr-induced signaling and provide insights into its
pro-carcinogenic potential.

INTRODUCTION

The Gram-negative bacterium Chlamydia trachomatis (Ctr) in-
fects the epithelium of the genital tract, causing, for example,
cervicitis, pelvic inflammatory disease, and scarring, with impact
on fertility. Infections frequently remain asymptomatic and
become chronic. Chlamydia is a strong risk factor for the devel-
opment of cervical and ovarian cancers, either independently or
as a co-factor with human papillomavirus (HPV) infections (Kos-
kela et al., 2000; Shanmughapriya et al., 2012; Zhu et al., 2016).
Due to the lack of physiologically relevant infection models, illu-
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minating the underlying mechanisms or even the natural prog-
ress of the infection in its different host tissues has remained
challenging.

As an obligate intracellular bacterium, Ctr has evolved the
means for manipulating host cell pathways by altering gene
expression and protein stability at the transcriptional, transla-
tional, and post-translational levels to ensure that its replicative
niche remains alive until the completion of the life cycle (Chum-
duri et al., 2016; Elwell et al., 2016; Olive et al., 2014). Ctr estab-
lishes infection by translocating effectors into host cells, thereby
triggering cytoskeletal rearrangements and signaling. Upon host
cell entry, its effector protein translocated actin-recruiting phos-
phoprotein (Tarp) is rapidly tyrosine phosphorylated to interact
with SH2 domains of human proteins, including the adaptor pro-
tein SRC homology 2 domain-containing transforming protein
C1 (SHC1), to activate pro-survival extracellular signal-regulated
kinase (ERK) signaling (Mehlitz et al., 2010). During the mid- to
late stages of infection, the activation of ERK occurs indepen-
dently of RAS-rapidly accelerated fibrosarcoma (RAF) and plays
an essential role in bacterial nutrient acquisition, synthesis of
inflammatory cytokines, and expression of anti-apoptotic factors
(Gurumurthy et al., 2010; Rajalingam et al., 2008; Su et al., 2004).
Furthermore, other mitogenic mitogen-activated protein kinase
(MAPK) signaling pathways, involving p38 and JNK, are acti-
vated by post-translational modifications, leading to an activa-
tion of activator protein-1 (AP1)-dependent transcription, which
is essential for Ctr development (Buchholz and Stephens,
2007; Chen et al., 2010; Olive et al., 2014). Ctr also suppresses
the key DNA damage response ataxia-telangiectasia mutated
(ATM) protein (Chumduri et al., 2013; Gonzalez et al., 2014), while
degradation of p53 via the Ak strain transforming-mouse double
minute 2 homolog (AKT-MDM2) signaling axis induces host
metabolism alterations that resemble the Warburg effect seen
in cancers (Ojcius et al., 1998; Rother et al., 2018; Siegl et al.,
2014). In addition, Ctr alters global histone post-translational
modifications, which can influence various cellular signals that
are essential for the maintenance of genome integrity (Chumduri
et al., 2013). Despite this, we know little about the complex
multifactorial nature of Ctr-induced host cellular signaling.
Many signaling events are modulated predominantly by protein
phosphorylation. Determining which residues of particular
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proteins are phosphorylated and to what extent would enable
us to reveal which kinases are activated following Ctr infection.
Here, we used an integrated phosphoproteomics and
transcriptomics analysis approach to comprehensively map
signaling pathways modulated by Ctr and to reveal the
complexity of the Ctr-induced signaling. Using stable isotope la-
beling with amino acids in cell culture (SILAC) and phosphopep-
tide enrichment coupled to tandem mass spectrometry (MS/
MS), we identified 2,529 distinct phosphorylation sites that are
regulated in response to Ctr infection. Most of these were not
previously shown to be Cir responsive. Bioinformatics analysis
revealed that these proteins were predominantly related to
transcription regulation, cellular growth, proliferation, and cyto-
skeleton organization. In silico identification of upstream kinases
suggested that MAPK and cyclin-dependent kinase (CDK) were
the most overrepresented upstream kinases for upregulated
phosphosites, while protein kinase A, G, and C families (AGC)
and calmodulin/calcium-regulated kinase (CAMK) were the
most overrepresented for the downregulated phosphosites.
Notably, several of the MAPK substrates were found to
be transcription factors (TFs), including fos-related antigen 1
(FRA1), ETS2 repressor factor (ERF), and proto-oncogenic
transcription factor ETS1, which are implicated in epithelial-
to-mesenchymal transition (EMT)-associated gene regulation.
In line with this, global analysis of the Ctr-regulated transcrip-
tome revealed an enrichment of EMT as one of the top five upre-
gulated hallmark signatures, several of which we identified as
targets of FRA1, ERF, and ETS1. These bioinformatics-based
predictions were functionally tested to confirm the MAPK-medi-
ated ETS1 and ERF transcriptional regulation and demonstrated
their role in EMT. We independently corroborated that Ctr-in-
fected cells exhibit other hallmarks of EMT, such as decreased
E-cadherin, increased N-cadherin, and expression of SNAIL1.
We also observed the disruption of epithelial integrity by Ctr,
as evidenced by the remodeling of human primary ectocervical
cell-derived three-dimensional (3D) raft cultures. The compre-

hensive picture of Ctr-induced host cell signaling emerging
from these studies thus provides important clues to the mecha-
nisms underlying its pathogenesis and will serve as an important
resource for future studies in this direction.

RESULTS

Ctr-Responsive Global Host Phosphoproteome
To obtain a global picture of Ctr-induced cell signaling, we first
investigated the phosphoproteome by western blot analysis of
the phosphorylation status of tyrosine (pY), threonine (pT), and
serine (pS) amino acid residues on proteins from the cytoplasmic
and nuclear fractions of Ctr-infected and -uninfected cells, as well
as an equal mix of lysates from both. The results indicate exten-
sive phosphorylation changes during acute and persistent infec-
tion (Figures 1A and 1B). To quantify the relative fold changes of
specific phosphorylation sites, we performed SILAC (Ong et al.,
2002) and phosphopeptide enrichment (Rappsilber et al., 2007)
coupled to MS/MS-based quantitative phosphoproteomics.
To enable comparative analysis, uninfected control End1/E6E7
cells were stable isotope labeled with medium containing
13C4"°N, L-lysine/'*Cg'°N,4 L-arginine to construct a heavy isotope
control phosphoproteome, while cells destined for infection were
cultured in light medium to construct a Ctr-infected, light phos-
phoproteome (Figure 1C). Following 32 h of infection with Ctr,
the light cells were mixed with heavy, uninfected cells at an equal
ratio before collecting the enriched phosphopeptides from the
total and nuclear fractions to distinguish proteins from heavy
and light cells by MS. Peptide scoring, protein identification,
and quantification were performed using MaxQuant software
(Cox and Mann, 2008). Correlation analysis using the log2 trans-
formed fold change values from two biological replicates revealed
a high Pearson’s correlation coefficient score, confirming the high
quality and reproducibility of the data (Figures S1A and S1B).
From the total and nuclear fractions, we identified 17,917
distinct phosphopeptides that match to 4,564 proteins (Figures

Figure 1. Ctr Infection Leads to Global Alterations in Host Cell Phosphoproteome

(A) Uninfected or Ctr-infected cells for 32 h were collected separately or mixed at a 1:1 ratio, followed by subcellular fractionation and immunoblot analysis. MEK1/
2 and histone 4 were used as loading controls for cytoplasmic and nuclear fractions, respectively, and heat shock protein 60 (HSP60) was used as an infection
marker. Lysates from each fraction were analyzed for phosphorylation status using antibodies against phosphoserine (pS), phosphothreonine (pT), and phos-
photyrosine (pY) antibodies.

(B) Cells were either uninfected or persistently infected with Ctr, and protein lysates collected every day until 6 days post-infection (p.i.) were subjected to
immunoblot analysis using pS, pT, and pY antibodies. HSP60 and B-actin antibodies were used for the detection of infection particles and loading control.

(A and B) M represents the molecular weight marker represented in kDa. Data are representative of two biological replicates.

(C) Schematic representation of global phosphoproteome analysis upon Ctr infection using stable isotope labeling by amino acids in cell culture (SILAC) coupled
to liquid chromatography—tandem mass spectrometry (LC-MS/MS) to quantitate differentially regulated phosphoproteomes. 32 h p.i., non-infected (heavy
labeled: °Cg'°N;, L-lysine/"*C¢'°N, L-arginine) and Ctr-infected (light labeled: L-lysine/L-arginine) cells were equally mixed from which either total cell extract or
nuclear fraction protein lysates were prepared. Proteins were enzymatically digested into peptides with Lys-C and trypsin followed by LC-MS/MS to measure
global proteome or phosphopeptide enrichment using TiO, columns for global phosphoproteome analysis. The ratio of heavy to light peak area accounts for a
relative amount of each peptide analyzed by MaxQuant software.

(D and E) Volcano plot representing global phosphoproteome dataset from (D) nuclear fraction and (E) total cell extract according to log2 fold change (FC) (x axis)
and p value (y axis). The cutoff of +0.5 log2 FC (dashed vertical lines) and 0.05 p value (dashed horizontal line) was applied. Phospho hits are highlighted,
depending on phosphorylated residues colored as labeled.

(F) A total of 17,917 unique phosphopeptides with 2,529 regulated (+0.5 log2 FC) upon Ctr infection were identified from total cell extract and nuclear fraction.
Using MaxQuant software, 12,863 class | phosphorylation sites were defined by a localization probability of 0.75, which were considered in further filtering, with
2,327 regulated (+0.5 log2 FC) upon Ctr infection.

(G) Phosphosite distribution on S/T/Y phosphorylation residues is represented in graphs for total cell extract and nuclear fraction.

(H) Differentially regulated class | phosphorylation sites with +0.5 log2 FC in Ctr-infected cells compared to uninfected cells.

See also Figure S1.
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1D-1F; Table S1). Based on post-translational modification
(PTM) scores obtained from MaxQuant software, we defined
12,863 high confidence class | phosphosites corresponding to
4,251 proteins (with a localization probability of 0.75) (Olsen
et al.,, 2006). Among these, 2,327 class | phosphosites corre-
sponding to 1,252 proteins were significantly regulated upon
Ctr infection (|log2 FC| > 0.5 and posterior error probability
[PEP] < 0.05; Figure 1F; Table S1). The relative frequency of
phosphoserine (pS), phosphothreonine (pT), and phosphotyro-
sine (pY) in the total and nuclear fractions (Figure 1G) is consis-
tent with other studies, with a 90:10:0.05 ratio across S/T/Y sites
(Hunter and Sefton, 1980). In the total cell extracts, 1,436 class |
phosphorylation sites were regulated at least |log2FC| > 0.5
(PEP < 0.05; FC, fold change) in response to infection, 957 of
which were increased, while 479 were decreased. In the
nuclear fraction, this corresponded to 1,383 responsive sites,
597 of which were increased and 786 were decreased (Figure 1H;
Table S1).

Characterization of Ctr-Induced Kinase Regulation
Pathway overrepresentation analysis of Ctr-regulated phospho-
proteins revealed that it modulates signaling pathways involved
in a wide range of molecular and cellular functions. The top five
signaling pathways enriched among the upregulated phospho-
proteins from both total cell extract and nuclear fractions of
infected cells using Gene Ontology (GO) term analysis for biolog-
ical processes (GOBP) include regulation of transcription, prolif-
eration, and nucleic acid metabolism. Upregulated phosphopro-
teins in total cell extracts are involved in the regulation of small
GTPase-mediated signal transduction, apoptosis, the stress-
activated protein kinase signaling pathway, and JNK/MAPKKK
cascades. The downregulated phosphoproteins are mainly
involved in pathways associated with cytoskeleton organization,
regulation of protein complex disassembly, cell cycle, chromo-
somal organization, and DNA repair (Figures S2A and S2B;
Table S2). Ingenuity pathway analysis (IPA) of Ctr-regulated
phosphoproteins revealed an overrepresentation of biological
processes related to cancer, the reproductive system, gastroin-
testinal and hepatic diseases, as well as organismal injury and
abnormalities (Figure S2B).

We next carried out in silico assignment of the upstream ki-
nases to each of the regulated phosphosites using the experi-
mentally annotated site-specific kinase-substrate relation ob-

tained from the PhosphoSitePlus database (Hornbeck et al.,
2015). Of 2,327 regulated (log2 > 0.5) phosphosites, only 150
sites on 119 proteins were identified to be experimentally anno-
tated in the database. This analysis revealed 31 kinases with at
least one or more substrates, including Akt, CDK, epidermal
growth factor receptor (EGFR), glycogen synthase kinase
(GSK), MAPK, RAF, and Src, (Figure 2A; Table S3), indicating
that an extensive range of kinases is potentially regulated by
Ctr. We also generated the Ctr-regulated kinase interactome
for these predicted kinase-substrate relations using the pro-
tein-protein interaction network information from the STRING
database (Figure 2B; Table S3). This network reveals the pro-
tein-protein interactions between predicted kinases and their
substrates, which is not evident from analyzing the kinase-sub-
strate relations alone.

However, for the majority of the Ctr-regulated phosphosites,
the associated upstream kinase is unknown. We therefore as-
signed the upstream kinase for each of these sites using the
group-based prediction system (GPS) with the interaction filter
(IGPS) (Song et al., 2012) and motif extractor (motif-x) (Schwartz
and Gygi, 2005) bioinformatic tools. The iGPS combines the
consensus substrate motif analysis with protein-protein interac-
tion databases to predict the likelihood that a particular kinase or
kinase family phosphorylates a given phosphorylation site,
whereas motif-x generates potential kinase substrate motifs by
measuring the overrepresented patterns of amino acid se-
quences. Mapping these predicted kinase-substrate relations
onto the human kinome tree revealed an overrepresentation in
both total cell and nuclear fractions of members of the CMGC ki-
nase group (e.g., MAPK, CDK, GSKS, dual specificity tyrosine-
regulated kinase [DYRK], homeodomain-interacting protein ki-
nase [HIPK]), while the nuclear fraction showed enrichment for
CAMK, AGS, and tyrosine kinase-like (TKL) kinases (Figure 2C;
Table S4). Moreover, motif-x analysis revealed overrepresenta-
tion of MAPK and CDK motifs among the upregulated phosphor-
ylation sites in both total and nuclear fractions (Figures 2D and
2E), while CAMK2, protein kinase A (PKA), and PKC motifs
were enriched among the downregulated phosphosites in the
nuclear fraction (Figure 2F).

Ctr expresses a number of effector proteins that are either
secreted into the host cytoplasm or linked to the inclusion mem-
brane, with one of their domains exposed to the host cytosol.
Moreover, it is widely recognized that the Ctr proteins TARP,

Figure 2. Chlamydia-Responsive Kinome Signaling

(A) Circular plot representing validated biologically relevant phosphorylation sites retrieved from the PhosphoSitePlus database that were differentially regulated
upon Ctr infection with at least +0.5 log2 FC. Different colors correspond to various kinase families that are predicted as upstream regulators of the selected
phosphorylation site. A cutoff of +0.5 log2 FC and localization probability >0.75 for total cell extract (gray line) and nuclear fraction (black line) were applied.
(B) A Ctr-regulated kinase interactome was generated by integrating kinase-substrate relations retrieved from PhosphoSitePlus and known human protein-
protein interactions from STRING of differentially regulated phosphoproteins depicted in (A) generated using Cytoscape (v3.2.1). Predicted upstream kinases are
added manually and connected with Ctr-regulated phosphorylation sites (dashed lines colored as in A). Up- or downregulated phosphosites are marked green or
red, respectively. Proteins with more than one site are shown in yellow. Different shapes correspond to changes in total cell extract (rectangle), nuclear fraction
(circle), or both (triangle).

(C) Upstream kinase predictions using iGPS analysis for unannotated phosphosites with > 2 fold change upon Ctr infection from both total cell extract (red circles)
and nuclear fraction (orange circles) were mapped to the kinome tree.

(D-F) Motif-x tool was used to identify the overrepresentation of linear signature motifs to predict kinases involved in regulating all of the phosphorylation sites that
are upregulated in the total cellular fraction (D), nuclear fraction (E), and downregulated in the nuclear fraction (F) upon Ctr infection with p < 10~°. Sequences were
centered on each phosphorylation site and extended to 15 amino acids (+7 residues).

See also Figure S2.
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translocated early phospho-protein (TepP), inclusion membrane
protein G (IncG), and IncA are phosphorylated by host cell ki-
nases (Carpenter et al., 2017; Claywell et al., 2016; Rockey
et al., 1997). Therefore, we searched for phosphorylated Ctr pro-
teins from the phosphoproteome data of infected cells, revealing
81 Ctr proteins to be phosphorylated, which consist predomi-
nantly of inclusion membrane proteins. To predict the respon-
sible host kinases for the identified Ctr phosphoproteins, we
retrieved kinase-substrate relations from the Human Protein
Reference Database (HPRD) (Figure 3A; Table S5). This analysis
suggests that PKA, PKC, casein kinase 2 (CK2), GSKS, Granta
519 resistant from kidney (GRK), cluster of differentiation 5
(CD5), and ERK1/2, among others, are host kinases that could
regulate Ctr proteins.

Integration of Ctr-Responsive Transcriptome and
Phosphoproteome Identifies EMT Signature

To identify relevant pathways and functions, we mapped
the >2-fold regulated phosphoproteins on known protein-protein
interactions provided by the Search Tool for the Retrieval of
Interacting Genes/Proteins (STRING) database (see Method
Details). This analysis revealed five prominent subnetworks.
Among these, MAPK1/3 and EGFR, as well as their interaction
partners, formed the core networks and were connected directly
or indirectly with other modules. The core MAPK1 and MAPK3
interaction network contained five transcription factors—ETS1,
FRA1, ERF, ETS variant 3 (ETV3), and CCAAT enhancer binding
protein beta (CEBPB)—none of which have been functionally
linked to Ctr infections thus far (Figure 3B).

Corroborating these results, GO enrichment of all >2 Ctr-regu-
lated phosphoproteins showed that transcriptional regulation
and MAPKKK cascade were among the top biological processes
mediated by Ctr-regulated phosphoproteins (Figure S2A). To
examine their role in controlling the expression of downstream
target genes, transcriptomic analysis of Ctr-infected cells was
performed. Gene set enrichment analysis (GSEA) of genes differ-
entially expressed during Ctr infections using the Molecular Sig-
natures Database (MsigDB) hallmark gene sets revealed EMT as
one of the top five upregulated signatures besides inflammation,
the tumor necrosis factor-a-nuclear factor kB (TNF-o-NF-kB)
axis, interleukin 6 (IL6)-JAK-Stat3, and Kirsten rat sarcoma 2 viral
oncogene homolog Phenylalanine (KRAS) signaling (Tables S6

and S7). Consistent with these observations, GSEA of the
Ctr-induced global transcriptome revealed an enrichment of
many genes associated with EMT (Groger et al., 2012) (Figures
3C and S3A). The transcription factors FRA1, ETS1, and ERF,
which are found to have high confidence interactions with
ERK1/2 in the STRING analysis (Figure 3B, thick lines), have
been implicated in regulating many of the EMT-associated
genes (Plotnik et al., 2014; Rajasekaran et al., 2013). Therefore,
we decided to perform an in-depth analysis of the possible role
of ERK1/2, p-FRA1(S265), p-ETS1(S282), and p-ERF (T526) in
EMT modulation during Ctr infections.

FRA1, ETS1, and ERF Transcription Factors and Their
Targets Are Regulated during Ctr Infection

The regulated phosphosites of the three selected transcription
factors from the global analysis were validated by immunoblot
with phosphospecific antibodies, using endocervical End1/
EBE7 cells (Figures 3D and S3B-S3E). Since this cell line was
immortalized with E6/E7 oncogenes of HPV, we further validated
these hits using healthy human primary ectocervical cells
(hCEctos) derived from HPV™ donors to address and distinguish
Ctr-specific effects from those induced in the presence of E6/E7
(Figures 3E and S3F). We confirmed that these transcription fac-
tors are essential for pathogen development (Figures 3F and 3G).
Knockdown of ETS1 and ERF resulted in a significant reduction
in Ctr infectivity compared to small interfering RNAs (siRNAs)
targeting luciferase (siLuci)-treated control cells (Figure 3G), indi-
cating their importance in chlamydial development.

To identify the target genes of FRA1, ETS1, and ERF transcrip-
tion factors that are specifically regulated during Ctr infection, we
generated interaction trees of all of the known downstream target
genes of FRA1, ETS1, and ERF using IPA. All of the genes differ-
entially regulated (>1.5 FC and p < 0.05) (Table S6) upon Ctr
infection were then overlaid on this network. Shown are the
ERF, ETS1, and FRA1 target genes that are regulated by Ctr (Fig-
ures 4A-4C and S4A). We then annotated the diseases and func-
tions for all of the regulated target genes of FRA1, ETS1, and ERF
separately using IPA (Table S8). The results indicate their involve-
ment in the regulation of numerous genes involved in inflamma-
tion, angiogenesis, EMT, tumor growth, cell movement, and inva-
siveness. We validated a subset of these genes by gRT-PCR
(Figures 4E, 4F, S4B, and S4C). Genes associated with cellular

Figure 3. Global Phosphoproteome Validation of Selected Hits and Their Role in Ctr Development

(A) The identified phosphorylation sites on Ctr proteins (x axis) and host kinases (y axis) predicted as potential upstream regulators based on the kinase-substrate
relations retrieved from the Human Protein Reference Database.

(B) A protein-protein interaction network analysis of 2-fold Ctr-regulated phosphoproteins using the STRING database was performed with k-means clustering
set to six clusters, while the disconnected nodes were removed, resulting in five prominent interaction networks.

(C) Gene set enrichment analysis of Ctr-regulated genes compared with epithelial-to-mesenchymal transition (EMT)-associated gene set reveals significant
enrichment of EMT signature genes.

(D and E) Validation of phosphoproteome hits in (D) primary-like HPV EBE7 immortalized human endocervical epithelial cells (End1/E6E7) and (E) human primary
ectocervical epithelial cells (hCEctos). Cells uninfected or Ctr infected for 32 h were subjected to immunoblot analysis for various proteins, as indicated using
phosphospecific antibodies, chlamydial HSP60, and B-actin. Data are representative of three biological replicates.

(F and G) End1/EBE7 cells were transfected with small interfering RNAs (siRNAs) targeting luciferase (siLuci), FRA1/FOSL1, ERF, and ETS1, respectively, for 72 h
(F). These cells were subsequently infected with Ctr for 48 h. Cell lysate was used to re-infect freshly seeded cells for 24 h to quantify infectivity. Data shown as
means + SDs of three biological replicates (***p < 0.004, ****p < 0.0001).

(G) Knockdown efficiency was analyzed by gRT-PCR.

(F and G) Data shown as means + SDs of three biological replicates normalized to silL.uci control.

See also Figure S3.
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movement (plasminogen activator, urokinase [PLAU], PLAUR),
invasiveness (SEMA7A), inflammation (IL8, TNF-a), tight junc-
tions (E-cadherin), and matrix metalloproteinase (MMP9) were
upregulated during both acute and persistent infection in
hCEctos (Figures 4E and 4F) and END1/E6E7 cells (Figures
S4B and S4C). Accordingly, western blot analysis showed that
Ctr-induced phosphorylation of FRA1, ETS1, and ERF is main-
tained during persistent infection (Figures 4D and S4D).

Ctr Induces Loss of Cell Adhesions, Tissue Disruption,
and Invasive Phenotype

We thus sought to investigate whether the observed transcrip-
tional upregulation of EMT genes in infected cells induces an
EMT phenotype. EMT is a complex process whereby polarized
epithelial cells acquire characteristics of an invasive mesen-
chymal cell phenotype. Epithelial cells undergoing EMT lose
polarity and cell adhesion structures, and show enhanced migra-
tory capacity, invasiveness, elevated resistance to apoptosis,
and increased production of extracellular matrix (ECM) compo-
nents (Son and Moon, 2010). Western blot analysis of END1/
EGE7 and primary cells showed that persistent Ctr infection
decreased the levels of the epithelial marker E-cadherin and
increased the levels of the mesenchymal marker N-cadherin
(Figures 5A and 5B). This was accompanied by reorganization
of the actin cytoskeleton from thin cortical bundles to thick, par-
allel, contractile bundles, which are usually observed in transdif-
ferentiated mesenchymal cells (Figure 5C). To further elucidate
this EMT phenotype in a physiological situation, we established
an air-liquid interface (ALI) culture model using a defined culture
medium that maintains human ectocervical stem cells, which
give rise to a differentiated, squamous stratified ectocervical
epithelium that recapitulates the tissue architecture. The result-
ing multi-layered E-cadherin* epithelium consists of a p63* basall
layer containing stem cells, a parabasal layer, and a terminally
differentiated p63-luminal layer (Figure 5D) in which proliferating
Ki67* cells are mainly restricted to the basal compartment (Fig-
ure 5E). An infection time course showed that Ctr can infect
the terminally differentiated luminal epithelium and that the infec-
tion proceeds toward the basal stem cell compartment by dis-
rupting epithelial integrity (Figure 5F). To elucidate the migratory
capacity and invasiveness of the infected cells, we performed a
Matrigel-based assay (Hall and Brooks, 2014), which estimates
the capacity of cells to invade through the basement membrane
that separates epithelial cells from adjacent connective tissue.
Concordant with the other observed EMT traits, persistent Ctr
infection increased the invasiveness of both End1/EGE7 and
hCEcto cells (Figures 5G and 5H).

ERK Regulates Transcription Factors FRA1, ETS1, and
ERF and Initiates EMT during Ctr Infection

Next, we sought to confirm our bioinformatics-based kinase-
substrate prediction of ERK as the upstream kinase for the regu-
lation of the phosphorylation of p-FRA1(S265), p-ETS1(S282),
and p-ERF(T526) in Ctr infections (Figures 3B and 3C). Using
an ERK1/2 MAPK specific inhibitor, we could completely abro-
gate the phosphorylation of p-FRA1(S265), p-ETS1(S282), and
p-ERF(T526) during Ctr infection, thus validating our kinase
substrate predictions (Figure 6A). The results were similar in
hCEctos (Figure 6B), further confirming that ERK-mediated
regulation of transcription factors is Ctr specific and does not
depend on HPV status.

U0126-mediated ERK inhibition also inhibited the transcrip-
tional activity of FRA1, ETS1, and ERF after Ctr infection, as
demonstrated by the reduced expression of their downstream
target genes MMP9, MMP3, PLAUR, SEMATA, and IL8 (Fig-
ure 6C), and prevented the induction of invasiveness (Figure 6D).
These data demonstrate that Ctr-induced ERK signaling is
crucial for transcriptional and post-translational regulation of a
cohort of transcription factors that control EMT.

Chlamydia-Induced Phosphorylation and Nuclear Export
of ERF Promote Cellular Invasion

ERF is ubiquitously expressed, exhibits strong transcriptional
repressor activity, and is only known to be regulated via ERK-
dependent phosphorylation at multiple sites that relieve its tran-
scriptional repressor activity by promoting nuclear export and
cytoplasmic accumulation, leading to pro-migratory function
(Le Gallic et al., 2004). To investigate whether Ctr-induced phos-
phorylation of the ERF repressor domain at T526 is sufficient to
promote nuclear export, we performed subcellular fractionation
to obtain nuclear and cytoplasmic proteins from Ctr-infected and
control cells with or without U0126 treatment. In addition, sub-
cellular fractions of cells treated with EGF served as a positive
control. Immunoblot analysis using pERF T526 antibody showed
a predominant localization to the cytoplasmic fraction in both
Ctr-infected and EGF-treated cells, which was abrogated by
U0126 (Figure 7A). To further refine the mechanism responsible
for the induction of invasiveness by Ctr, we generated cells over-
expressing ERF mutants using the following plasmids: (1) ERF-
m1-7, carrying S/T-to A mutations in seven potential ERK phos-
phorylation sites that exhibit constitutive nuclear localization;
(2) ERF-FSF/FKF (Phenylalanine-Serine-Phenylalanine/Phenyl-
alanine-Lysine-Phenylalanine), carrying a mutation that inhibits
the ERF-ERK interaction and thus interrupts signaling to ERF;
and (3) ERF T526, carrying a T526-to glutamic acid mutation in

Figure 4. Ctr Regulates Genes, Including Targets of ERF, ETS1, and FRA1, Associated with EMT

(A-C) Genes transcriptionally regulated by Ctr were overlaid onto a network generated using IPA for all known target genes of FRA1, ETS1, and ERF separately.
The resulting networks were manually curated to represent only those genes regulated during Ctr infection by (A) ERF, (B) ETS1, and (C) FRA1 transcription
factors, respectively. Significantly upregulated and downregulated genes are depicted in red and green, respectively.

(D) END1/EBE7 cells uninfected or persistently infected with Ctr and cell lysates were subjected to immunoblot analysis for indicated phosphorylations on ERF,
ETS1, and FRA1, and chlamydia HSP60 and B-actin as loading control. Data are representative of three biological replicates.

(E and F) hCEcto cells were (E) acutely or (F) persistently infected with Ctr for 32 h and 8 days p.i., respectively. Shown is the relative MRNA expression of selected
ERF, ETS1, and FRA1 target genes analyzed by qRT-PCR. Data shown are means + SDs of three biological replicates. ***p < 0.0001, ***p < 0.001, **p < 0.01,

*p < 0.05, Student’s t test.
See also Figure S4.

1294 Cell Reports 26, 1286-1302, January 29, 2019



OPEN

ACCESS
CellPress

A  End1/EGE7 B  hCEcto
- + - + Ctri2

— ||— s | E-cadherin

. — “ @ | N-cadherin

p— | 1oPe0

| |, | B-Actin

Ecto-Tissue

C mmEnd1/E6E7 D Uninfected CtrL2 infected
= hCEcto N

3 o
=
2 ©
™
i
0
-1
-2 <

Relative protein levels in
Ctr L2 infected cells

Uninfected Ctr L2 infected

Ecto-Tissue

<)
=4
=
[=
Q
&)
[]
> B
=
]
0 B
o
%

End1/EGE7
Ctr L2 infected Uninfected

Uninfected

Ctr L2 infected

(legend on next page)

Cell Reports 26, 1286-1302, January 29, 2019 1295



OPEN

ACCESS
CellPress

the ERF transcription repressor domain. All of the END1/EGE7
mutants, but also overexpression of wild-type ERF, prevented
Ctr-induced invasiveness (Figure 7B). This could be due to the
excess availability of non-phosphorylated ERF exerting repres-
sive activity. These results indicate that following Ctr infection,
ERK-mediated phosphorylation of ERF at T526 leads to nuclear
export, which relieves repressor activity and promotes invasion.

ETS1-Dependent Transcription Program Is Crucial for
Ctr-Induced EMT

The observed Cir-induced phosphorylation of ETS1 at S282
creates binding sites for the COP1, E3 Ubiquitin Ligase (COP1)
tumor suppressor protein, which is a ubiquitin ligase component
that leads to ETS1 destruction (Lu et al., 2014). Damaged DNA-
binding protein 1 (DDB1) and de-etiolated 1 (DET1), components
of the COP1 complex, are significantly downregulated in Ctr-
infected cells (Table S6), indicating that ubiquitin activity is
suppressed, which prevents ETS1 degradation. In addition, the
transcription factor runt-related transcription factor 1 (Runx1)
can cooperatively interact with and effectively activate ETS1
by inducing a phosphorylation-refractory conformation of ETS1
via allosterically enhanced DNA binding stability (Shiina et al.,
2015; Shrivastava et al.,, 2014). Together, the loss of ERF
repressor activity and the increased ETS1 protein stability during
Ctr infection indicate a transcriptional activation of ETS1 that
may contribute to the observed EMT phenotype. We therefore
created a CRISPR-Cas9-mediated ETS1 knockout cell line as
confirmed by immunoblotting against total ETS1 protein (Fig-
ure 7C). The loss of ETS1 led to reduced expression of the
effector genes IL8, TNF-a, MMP3, early growth response 1
(EGR1), and PLAU (Figure 7D) and reduced invasiveness in
Ctr-infected cells (Figure 7E). Thus, Ctr modulates ERK-medi-
ated transcription factor regulation to induce effectors that pro-
mote an EMT phenotype with enhanced invasive capacity.

DISCUSSION

Here, we performed an integrated global phosphoproteomic and
transcriptomic analysis, revealing the striking impact of Ctr on
host cell signaling and cellular behavior. Our comprehensive
map of the signaling network of the total and nuclear fraction
of host cells was used to generate a Ctr-responsive kinome
network. Based on this, we identified the phosphorylation status
of regulated transcription factors that are ERK/MAPK substrates

and demonstrated the role of ETS1 and ERF in the resulting EMT
phenotype. The results reveal a substantially greater range of
Ctr-regulated signaling cascades than previously appreciated
and provide a resource for generating deeper insight into their
role in pathogenesis and potential host cell transformation.

Post-translational protein modifications have emerged as an
additional level of dynamic control over protein function in
diverse cell biological contexts. Protein phosphorylation is the
most prevalent type of post-translational modification regulated
in cellular signaling. By catalyzing the addition of phosphate
groups to specific amino acids, usually Ser, Thr and Tyr residues,
protein kinases regulate key processes such as cellular prolifer-
ation, survival, and migration and can contribute to the various
hallmarks of cancer if their activity is deregulated (Fleuren
et al., 2016). In line with emerging evidence indicating the ability
of Chlamydia to interfere with protein function on the level of tran-
scription and post-translational modification to modulate host
cellular processes (Chumduri et al., 2016; Elwell et al., 2016;
Siegl et al., 2014), we identify here 2,327 class | phosphorylation
sites that are significantly affected by Ctr infection.

Bioinformatic analysis revealed that upregulated phosphosites
during Ctr infection are involved in the regulation of transcription,
gene expression, proliferation and nucleic acid metabolism,
small GTPase-mediated signal transduction, stress-activated
protein kinase signaling pathways, and JNK and MAPKKK
cascades. Phosphosites downregulated by Ctr, however, are
involved in cytoskeleton organization, regulation of protein com-
plex disassembly, apoptosis, cell-cycle checkpoints, chromo-
somal organization, and DNA repair. Our data further highlight
the regulation of numerous signaling cascades implicated in
cancer, as well as organismal injury and abnormalities.

Host kinases have also been implicated in regulating Chla-
mydia proteins. Tarp and TepP, two effector proteins involved
in host cell invasion, are rapidly tyrosine phosphorylated upon
host cell entry by unknown host kinases facilitating the interac-
tion with the host adaptor proteins (Chen et al., 2014; Mehlitz
et al., 2010). However, we did not find these proteins to be phos-
phorylated, as they are known to be diminished to undetectable
levels during later infection time points (Carpenter et al., 2017;
Clifton et al., 2004). We identified 81 Ctr proteins, predominantly
inclusion membrane proteins, to be phosphorylated. Further-
more, in silico kinase-substrate analysis revealed PKA, PKC,
CK2, GSK3, GRK, CD5, and ERK1/2, among others, to be
potential host kinases that regulate Ctr proteins. The functional

Figure 5. Chlamydia Induces Loss of Cell Adhesions, Tissue Damage, and Invasive Phenotype
(A and B) hCEctos (A) and End1/EBE7 cells (B) persistently infected with Ctr for 7 days were subjected to immunoblot analysis for E-cadherin, N-cadherin,

chlamydia HSP60, and B-actin.
(C) Shown are the densitometry values of immunoblots shown in (A) and (B).

(D) Uninfected and Ctr-infected End1/EBE7 cells were subjected to immunofluorescence analysis 36 h p.i. and 8 days p.i. Representative confocal images for
phalloidin (F-actin), Ctr-major outer membrane protein (MOMP), and DNA (Hoechst) are shown.

(E and F) Section of paraffin-embedded 3D-ALI cultures of hCEcto cells and human ectocervical tissue were subjected to immunofluorescence analysis. Shown
are the representative confocal images of E-cadherin and p63 (E) p63 and Ki67 (F).

(G) Uninfected and Ctr-infected 3D-ALI cultures of hCEcto cells were subjected to immunofluorescence analysis for E-cadherin, Ctr-MOMP, and DAPI at

indicated time points p.i.

(H and ) Uninfected and persistently infected End1/EBE7 (H) and hCEcto (l) cells with Ctr were analyzed using a transwell Matrigel-based invasion assay. HT1080
fibrosarcoma cells served as positive control. Images on the left show cells on top of the transwell that did not migrate; images on the right show cells that have
migrated through the transwells in response to 10% fetal calf serum as a chemoattractant.

Data shown are representative of three biological replicates.
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Figure 6. Chlamydia-Induced ERK Signaling Regulates EMT-Associated Genes and Invasion

(Aand B) End1/EBE7 (A) and hCEcto (B) cells, either uninfected or Ctrinfected for 32 h with or without additional U0126, were subjected to immunoblot analysis for
Ctr-regulated phosphoproteins as indicated, chlamydial HSP60, and B-actin. Data are representative of four biological replicates.

(C and D) End1/E6E7 cells either uninfected or persistently Ctr infected with or without U0126 treatment.

(C) The expression of ERF, FRA1, and ETS1 target genes analyzed by qRT-PCR. Data are shown as means + SDs from three technical replicates.

(D) Representative images of transwell Matrigel-based invasion assay. HT1080 fibrosarcoma cells were used as a positive control. “***p < 0.0001, ***p < 0.001,
**p < 0.01, *p < 0.05, Student’s t test.

implications of the phosphorylation of these Chlamydia proteins
await further investigation.

Previous studies demonstrated that the deregulation of ERK1/
2, AKT, and checkpoint 2 (CHK2) kinases by Chlamydia enforces
host cell proliferation by interfering with apoptosis and the
response to metabolic and oxidative stress and DNA damage
(Chumduri et al., 2013; Gurumurthy et al., 2010; Siegl et al.,
2014). However, the majority of the regulated phosphoproteins
and the predicted upstream kinases identified in the present
study have not been previously associated with the response

to Chlamydia. The Chlamydia responsive host kinome network
highlights many nodes, including members of the CMGC kinase
family such as CDKs and MAPKSs, which are predominantly acti-
vated in both total cellular and nuclear fractions, while CAMK and
AGC members such as CaMKII, CHK2, PKA, and PKC are selec-
tively inactivated in the nuclear fraction. In line with this, cyclic
AMP, which is a key regulator of PKA kinase activity, has been
found to inhibit Ctr maturation (Kaul and Wenman, 1986). Our
previous study demonstrated that phosphorylation of the DNA
damage response checkpoint protein CHK2 is suppressed,
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Figure 7. ERF and ETS1 Are Key Regulators of Ctr Epithelial-to-Mesenchymal Transition

(A) End1/EBETY cells, either uninfected or Ctr infected for 32 h with or without U0126 treatment. Cytoplasmic and nuclear fractions were prepared and subjected to
immunoblot analysis for total ERF and pERF T-526. Histone deacetylase 2 (HDAC2) and MEK1/2 were used as loading controls for nuclear and cytoplasmic
fractions, respectively. EGF-treated cells were used as positive control. Data are representative of three biological replicates.

(B) End1/E6E7 cell lines overexpressing ERF wild-type (WT), different constructs with loss-of-function mutations in ERF including at ERF T526, all of the
phosphosites activated by ERK (EFR M1-M7), and ERK interaction domain (ERF FSF/FKF) or control empty plasmids, respectively, were generated. These cells
were either uninfected or persistently infected with Ctr, and invasion assay was performed. Representative images of the transwell Matrigel-based invasion assay
are shown.

(C-E) CRISPR-Cas9-mediated ETS1 knockout End1/EGE7 cell line was generated.

(C and D) ETS1-CRISPR-Cas9 knockout (KO) and control cells were uninfected or infected with Ctr for 32 h.

(legend continued on next page)
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despite the induction of DNA double-strand breaks upon Ctr
infection (Chumduri et al., 2013).

Our present analysis revealed ERK1/2 as one of the predomi-
nant MAPK kinases activated by Ctr and is known to regulate a
wide range of targets, thus controlling diverse signaling cas-
cades involved in growth, proliferation, differentiation, survival,
and migration. In support of the predicted increased activity of
MAPK signaling during Ctr infection, other studies have demon-
strated rapid activation of pERK, p38, and p-JNK pathways to
promote Chlamydia growth (Chen et al., 2010; Chumduri et al.,
2013; Olive et al., 2014). Our exploration of Ctr-induced phos-
phoproteins identified several transcription factors, including
ETS1 and FRAA1, that are implicated in EMT as strong interaction
partners of MAPK1/3 and have not yet been functionally linked to
Ctr infections (Figure 3B).

Genes associated with EMT were overrepresented in the Ctr-
responsive transcriptome and included ETS1, ERF, and FRA1.
ETS1 is a proto-oncogenic transcription factor containing a
conserved ETS DNA binding domain (EBS) that activates multi-
ple genes involved in senescence, apoptosis, angiogenesis,
stem cell development, cell migration, and cancer development
(Dejana et al., 2007; Plotnik et al., 2014; Sharrocks, 2001). ERF,
another member of the ETS family, is a potent, ubiquitously ex-
pressed transcriptional repressor that recognizes promoters
with the EBS motif and regulates genes involved in proliferation
and Ras-induced tumorigenicity (Allegra et al., 2012; Mavrotha-
lassitis and Ghysdael, 2000; Sgouras et al., 1995). Deregulation
of the ETS family of transcription factors has been implicated
in the malignant transformation of cells, as they control genes
that are important for invasion and metastasis, such as MMPs
and PLAUR (Oikawa, 2004). FRA1 is an oncogenic member of
the Fos subfamily of basic leucine zipper domain (bZIP) tran-
scription factors. Fos proteins dimerize with Jun proteins to
transactivate AP1-dependent genes, including EMT-associated
MMPs, urokinase receptors (UPARs), integrins, adhesins and in-
flammatory genes. FRA1 is involved in cell motility and invasive-
ness. Elevated FRA1 levels are associated with tumorigenesis
and cancer progression (Diesch et al., 2014). We also observed
that many AP1-related proteins, such as JunB and D, cFos,
Finkel-Biskis-Jinkins murine osteosarcoma viral oncogene ho-
molog B (FOSB), and FRAT1, are transcriptionally regulated by
Ctr along with enhanced ERK1/2-dependent phosphorylation
of FRA1 at S265 sites, which is critical for its stability (Basbous
et al., 2007). Knockdown of ETS1 or ERF impaired Chlamydia
development. However, whether FRA1 is of similar importance
for the pathogen remains unresolved, as knockdown was lethal
for cells, which is consistent with previous observations (Meise
et al., 2012).

Our approach also provides insight into key molecular
mechanisms through which Ctr induces the EMT phenotype.
We found that Ctr-induced phosphorylation of ERK leads in
turn to the phosphorylation of ERF at T526 and ETS1 at S282.

ERK phosphorylates ERF at multiple sites to promote nuclear
export and cytoplasmic localization, thus relieving its transcrip-
tional repressor function (Le Gallic et al., 1999, 2004). We
observed that phosphorylated ERF-T526 accumulates in the
cytoplasm and that ERF mutants at ERK target sites, including
T626, inhibited the induction of invasiveness by Cir.

Similarly, invasiveness induction was not observed after
knockout of ETS1. The phosphorylation of ETS1 at S282 we
observed is known to inhibit its DNA binding activity and promote
binding of the COP1 ubiquitin complex proteins Cullin 4A
(CUL4A), DDB1, and DET1, leading to its degradation (Lu et al.,
2014). Despite this, ETS1 protein levels were stabilized after
infection, which could be explained by the marked downregula-
tion of DDB1 and DET1 that we observed. It is also known that
cooperative transcription factors such as RUNX1 can stabilize
its interaction with DNA and thereby override the inhibitory effects
of phosphorylation (Shiina et al., 2015; Shrivastava et al., 2014).

EMT is fundamental in development, wound healing, and stem
cell behavior and contributes pathologically to fibrosis, tissue
scarring, and cancer progression (Lamouille et al., 2014). Wound
healing and tumorigenesis share a common phenotype charac-
terized by cells changing from a stationary, differentiated to a
migratory, de-differentiated phenotype (Leopold et al., 2012),
and malignant tumors frequently arise at sites of chronic tissue
injury and excessive wound healing (Schafer and Werner,
2008). We observed that the enrichment of factors associated
with EMT in the Ctr-regulated phosphoproteome is accompa-
nied by a gain of invasive capacity of infected cells, together
with persistent transcriptional upregulation of genes involved
in cellular movement (PLAU), invasiveness (SEMA7A), and
extracellular matrix degradation (MMPs). In addition, resistance
to apoptosis and senescence, which are also acquired during
EMT, are known to be induced by Ctr infection (Chumduri
et al., 2013; Thiery et al., 2009).

Our phosphoproteomic and transcriptomic data, together with
our primary cervical infection model, provide insights into the
signaling and mechanisms underlying Ctr pathology on several
levels. The EMT phenotype of infected cells, in particular the
loss of epithelial cell adhesion, is likely to play a role in the epithe-
lial scarring associated with infections (Darville and Hiltke, 2010).
In addition, the resulting ability of the bacteria to gain access to
the basal stem cells, which are the target cells of the HPV tumor
virus, may explain the epidemiological evidence for Ctr as a co-
factor in cervical cancer (Koskela et al., 2000; Shanmughapriya
et al., 2012; Zhu et al., 2016). However, EMT induction in itself
may promote epithelial transformation, especially in the context
of our previous observations that Ctr downregulates the DNA
damage response while simultaneously inducing widespread
DNA damage (Chumduri et al., 2016). The results of this study
will provide a platform to generate new insights into the patho-
genesis of Ctr infections and their potential synergy with other
human genital tract infections.

(C) The blots confirming the loss of ETS1 in ETS1-CRISPR-Cas9 knockout cells compared to control conditions are shown. Chlamydial HSP60 and B-actin served

as infection and loading controls, respectively.

(D) Relative mRNA expression of ETS1 target genes analyzed by qRT-PCR. Data are shown as means + SDs from three biological replicates.
(E) ETS1-CRISPR-Cas9 knockout and control cells were uninfected or persistently infected with Ctr, and invasion assay was performed. Representative images

of the transwell Matrigel-based invasion assay are shown.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit-anti-Phospho-Ser Millipore Cat# AB1603; RRID:AB_390205
Rabbit-anti- Phospho-Thr Cell Signaling Cat# 9381S; RRID:AB_10691696
Mouse-anti- p-Tyr Santa Cruz Biotechnology Cat# sc-7020; RRID:AB_628123
Rabbit-anti-Phospho-FRA1(Ser265) Cell Signaling Cat# 3880; RRID:AB_2106922
Rabbit-anti-FRA1 Abcam Cat# ab124722; RRID:AB_11001005
Rabbit-anti-Phospho-ERF LSBio Cat# LS-C342103

Rabbit-anti-ERF Abcam Cat# ab153726
Rabbit-anti-Phospho-ETS1(Ser282) Invitrogen Cat# 441109G; RRID:AB_2533577
Rabbit-anti-ETS1 Abcam Cat# ab124282; RRID:AB_10975199
Mouse-anti-Phospho-ERK1/2 (T185/Y187) Sigma-Aldrich Cat# M8159; RRID:AB_477245
Rabbit-anti-Phospho-EGFR (Y1172) Abcam Cat# ab47364; RRID:AB_873777
Rabbit-anti-MEK1/2 Cell Signaling Cat# 9126; RRID:AB_331778
Mouse-anti-HDAC2 Cell Signaling Cat# 5113; RRID:AB_10624871
Mouse-anti-HSP60 Enzo Cat# ALX-804-071; RRID:AB_10539940

Mouse monoclonal species-specific
KK-12 IgG2a Ctr (anti-MOMP)

Mouse-anti-beta-Actin
Mouse-anti-E-cadherin
Rabbit-anti-N-cadherin
Mouse-anti-Histone H4
Rabbit-anti-p63

Mouse-anti-p63

Rabbit-anti-Ki67

Cy3-conjugated goat anti-mouse
Cy3-conjugated goat anti-rabbit
Cy2-conjugated goat anti-mouse
Donkey-anti-mouse IgG-HRP
Donkey-anti-rabbit IgG-HRP
Bacterial and Virus Strains

D. Grayston, University of Washington,
Seattle, WA, USA

Sigma-Aldrich

BD Biosciences

Abcam

Cell Signaling

Abcam

Abcam

Abcam

Jackson Immunoresearch
Dianova

Dianova

Santa Cruz Biotechnology
GE Healthcare

N/A

Cat# A5541

Cat# 610181; RRID:AB_397580

Cat# ab18203; RRID:AB_444317
Cat# 2935S; RRID:AB_1147658

Cat# ab53039; RRID:AB_881860
Cat# ab735; RRID:AB_305870

Cat# ab16667; RRID:AB_302459
Cat# 115-165-146; RRID:AB_2491007
Cat# 111-165-144; RRID:AB_2338006
Cat# 115-225-062; RRID:AB_2338741
Cati# sc-2314; RRID:AB_641170

Cat# NA934; RRID:AB_772206

Chlamydia trachomatis serovar L2 ATCC VR-902B
Biological Samples
hCEctos Department of Gynecology, Charité University N/A

Hospital, Berlin, Germany

Chemicals, Peptides, and Recombinant Proteins

Hoechst 33342
Drag5

Collagenase type Il
TrypLE

HEPES

GlutaMax

B-27

N2

Hydrocortisone

Sigma

Cell Signaling
Calbiochem
GIBCO
Invitrogen
Invitrogen
Invitrogen
Invitrogen
Sigma

Cat# 23491-52-3
Cati# 4084
Cat# 234155
Cat# 12604021
Cat# 15630-056
Cat# 35050-038
Cat# 17504-044
Cat# 17502048
Cat# H0888
(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER
Human EGF Invitrogen Cat# PHG0311
Human Noggin Peprotech Cat# 120-10C
Human FGF-10 Peprotech Cat# 100-26-25
N-acetyl-L-cysteine Sigma Cat# A9165
Nicotinamide Sigma Cat# N0636
TGF-B R kinase inhibitor IV Calbiochem Cat# 616454
ROCK inhibitor Y-27632 Holzel Diagnostika Cat# M1817
Forskolin Sigma Cat# F6886
Penicillin/streptomycin GIBCO Cat# 15140-122
Collagen Sigma Cat# C3867
Bovine skin collagen Sigma Cat# C4243
Opti-MEM medium GIBCO Cat# 31985070
Fugene 6 Promega Cat# E2691
HiPerfect Quiagen Cat# 301709; Lot. No. 127147353

Espa3| restriction enzyme

ThermoFisher

and Lot. No. 136232611
Cat# FD0454

RMPI 1640 medium GIBCO Cat# 52400
DMEM GIBCO Cat# 10938
Advanced DMEM/F12 GIBCO Cat# 12634
Fetal calf serum Biochrom AG Cat# S0155
Glutamine GIBCO Cat# 25030081
Sodium pyruvate GIBCO Cat# 11360070
PBS GIBCO Cat# 14190-094
Matrigel Corning Cat# 356231
(H) "3Cg'®N, L-Lysine Sigma Cat# 608041
13C6'°N, L-Arginine Sigma Cat# 608033
Critical Commercial Assays

NE-PER kit Thermo Fisher Cat# 78833

Dual-color Quick-Amp Labeling Kit

Agilent Technologies

Cat# 5190-0444

Deposited Data

Microarray data were deposited in the
National Center for Biotechnology
Information Gene Expression Omnibus

The mass spectrometry proteomics
data have been deposited to the
ProteomeXchange Consortium via the
PRIDE partner repository

https://www.ncbi.nIm.nih.gov/geo/

http://www.proteomexchange.org/

GSE104166

PXD011960

Experimental Models: Cell Lines

HEK293T cells ATCC CRL3216; RRID: CVCL_0063
End1 E6/E7 cells ATCC CRL-2615

3T3-J2 cells (gift from Craig Meyers) Howard Green laboratory, Harvard University N/A

Hela cells ATCC CCL-2; RRID: CVCL_0030
HT1080 cells ATCC CCL-121

Oligonucleotides

siRNA oligonucleotides See Table S9 See Table S9

Primers for gPCR See Table S9 See Table S9

gRNA oligonucleotides See Table S9 See Table S9

ETS1-CRISPR KO Primer See Table S9 See Table S9
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REAGENT or RESOURCE SOURCE IDENTIFIER

Recombinant DNA

psPax2 D. Trono, unpublished Addgene Cat# 12260
(http://n2t.net/addgene:12260)

pMD.2G (VSVG) D. Trono, unpublished Addgene Cat# 12259

pL-CRISPR.EFS.GFP plasmid
pLenti-CMV-GFP vector
pSG5-ERF wild-type
pSG5-ERF-T526
pSG5-ERF-M1-7
pSG5-ERF-FSF/FKF

(http://n2t.net/addgene:12259)

Heckl et al., 2014

Campeau et al., 2009

Prof. G. Mavrothalasitis (Allegra et al., 2012)
Prof. G. Mavrothalasitis (Le Gallic et al., 2004)
Prof. G. Mavrothalasitis (Allegra et al., 2012)
Prof. G. Mavrothalasitis (Allegra et al., 2012)

Addgene Cat# 57818
Addgene Cat# 17448
n/a
N/A
N/A
N/A

Software and Algorithms

Rosetta Resolver Biosoftware,
Build 7.2.2 SP1.31

Image Analysis/Feature Extraction
software G2567AA v. A.11.5.1.1

MaxQuant (v1.5.1.2)

Motif-X

KinMap

DAVID

T™M4

STRING

fgsea R package

R (v3.3)
limma R package

Circlize R package

Tibco Spotfire (v7)

Ingenuity® Pathway Analysis
ScanR Analysis

CHOP CHOP tool
GraphPad Prism

iGPS software v1.0.1

Rosetta Biosoftware

Agilent Technologies

Cox and Mann, 2008

Schwartz and Gygi, 2005
Eid et al., 2017

Huang et al., 2009
http://mev.tm4.org
Szklarczyk et al., 2015
Sergushichev, 2016

R Core Team
Ritchie et al., 2015

Gu et al., 2014

https://academic.oup.com/
bioinformatics/article-lookup/doi/
10.1093/bioinformatics/btu393

TIBCO Software Inc.

https://www.giagen.com/ingenuity
Olympus Soft Imaging Solutions

http://chopchop.cbu.uib.no
GraphPad Software

Song et al., 2012

No longer available

Cat. #G4460

http://www.coxdocs.org/doku.php?id=
maxquant:start

http://motif-x.med.harvard.edu/
http://kinhub.org/kinmap/
https://david.ncifcrf.gov/
http://mev.tm4.org
https://string-db.org/

https://bioconductor.org/packages/
release/bioc/html/fgsea.html

https://cran.r-project.org/

https://bioconductor.org/packages/
release/bioc/html/limma.html

https://cran.r-project.org/web/
packages/circlize/

https://www.tibco.com/products/
tibco-spotfire

Cat #: 830102
https://www.olympus-lifescience.com/
en/microscopes/inverted/scanr/
#lcms[tab]=%2Fmicroscopes%2Finverted
%2Fscanr%2Ffeatures

http://chopchop.cbu.uib.no

https://www.graphpad.com/scientific-
software/prism/

http://igps.biocuckoo.org/

Other

Polyethylene terephthalate (PET)
track-etched membrane

C18 Stage Tips packed with 10 mg

of ReproSil-Pur 120 C18-AQ 5-um resin
monolithic column MonoCap C18

High Resolution 2000

Cell Culture Inserts, 30 mm, hydrophilic
PTFE, 0.4 um

Corning

Dr. Maisch GmbH

GL Sciences

Merck

Cat# 353097

Cat# r15.aq.

Cat# 5020-10015

Cat# PICM03050
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, ThomasF.
Meyer (meyer@mpiib-berlin.mpg.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Chlamydia infections

Ctr L2 (ATCC VR-902B), stocks were prepared as described earlier (Gurumurthy et al., 2010). Briefly, Ctr was propagated in HeLa
cells grown in 150-cm? cell culture flasks in 24 mL of infection medium [DMEM (GIBCO) supplemented with 5% fetal calf serum
(FCS) (Biochrom), 2 mM glutamine, and 1 mM sodium pyruvate]. The cells were detached 48 hours after infection with 3-mm glass
beads and centrifuged at 500xg for 10 min at 4°C. Cells were resuspended in sucrose-phosphate-glutamate (SPG) buffer and
ruptured by vortexing with glass beads. Cell lysates were then centrifuged as before to sediment nuclei and cell debris. The
supernatant was further centrifuged at 20,000xg for 40 min at 4°C, and the resulting bacterial pellet resuspended in 15 mL SPG buffer
with a 21- to 22-gauge injection needle. Chlamydia suspensions were stored in aliquots at —75°C until required. Chlamydia infection
experiments were performed at a multiplicity of infection (MOI) of 5 unless stated otherwise in infection medium (DMEM
supplemented with 5% FCS, 2 mM glutamine, and 1mM sodium pyruvate). The medium was refreshed 2 h p.i., and cells were
grown at 35°C in 5% CO.. For persistent Ctr infection, cells were infected (MOl 5 unless stated otherwise) for 24 h. 24 h p.i
250 ng/ml doxycycline was added to both uninfected and infected cells and cells allowed to grow for 7 d p.i.

Cell lines

3T3-J2 (mouse embryo) (kind gift from Craig Meyers), End1/E6E7 (End1) (?) [American Type Culture Collection (ATCC) CRL-2615],
HT1080 (3) (ATCC, CCL-121) and HelLa (?) (ATCC, CCL-2) cells were cultured in HEPES-buffered growth medium [DMEM (GIBCO)
supplemented with 10% FCS (Biochrome), 2 mM glutamine, and 1 mM sodium pyruvate], at 37°C in a humidified incubator contain-
ing 5% CO..

Human ectocervical (hCEcto) primary cell isolation and propagation

Human ectocervix samples were provided by the Department of Gynecology, Charité University Hospital, Berlin, Germany. Scientific
usage of the samples was approved by the ethics committee of the Charité University Hospital, Berlin (EA1/059/15); informed con-
sent was obtained from all subjects to use their tissue for scientific research. Only anatomically normal cervical tissues were
used, within 2-3 h after removal. Human ectocervical biopsy tissue from a 50-year old female patient was washed in 10 cm Petri
dish with 1x PBS (GIBCO, # 14190-094) and minced with surgical scissors before incubating in 0.5 mg/ml collagenase type I
(Calbiochem, # 234155) for 2.5 h at 37°C in a shaker incubator. Tissue and dissociated cells were pelleted by centrifugation
(5 min at 1000 g, 4°C), supernatant was discarded, cells were resuspended in TrypLE express (GIBCO, # 12604021) and incubated
for 15 mins at 37°C in a shaker incubator. After dissociation, the cell and tissue pellet was resuspended in ADF (Invitrogen) medium
and passed through a 40-uM cell strainer (BD Falc, # 352340) to separate the single dissociated cells from tissue pieces. Cells were
pelleted by centrifugation (5 min at 1000xg, 4°C), resuspended in human ectocervical primary cell medium for cell expansion in
75 cm? flask coated with collagen. At 70%-80% confluence cells were passaged using TrypLE and seeded on lethally irradiated
3T3-J2 mouse fibroblasts in the ectocervical primary cell medium (Consisted of ADF, 12 mM HEPES and 1% GlutaMax, supple-
mented with 1% B27, 1% N2, 0.5 ug/ml hydrocortisone (Sigma, # H0888-1G), 10 ng/ml human EGF (Invitrogen, # PHGO0311),
100 ng/ml human noggin (Peprotech, # 120-10C), 100 ng/ml human FGF-10 (Peprotech, # 100-26-25), 1.25 mM N-acetyl-L-cysteine,
10 mM nicotinamide, 2 uM TGF-B R kinase Inhibitor IV, 10 pM ROCK inhibitor (Y-27632), 10 uM forskolin (Sigma, F6886) and 1%
penicillin/streptomycin). For infection experiments, hCEctos were subjected to differential trypsinization to separate fibroblasts
from epithelial cells and epithelial cells were seeded on a plastic dish coated with collagen (1:100 in 1x PBS for 1 h at 37°C).

Three dimensional air-liquid interface cultures of human derived ectocervix

Air-liquid interface (ALI) cultures were established using trans-well organotypic inserts (Merck, # PICM03050). A bovine skin collagen
(Sigma # C4243) bed containing 3T3-J2 mouse fibroblasts was plated onto the trans-well insert. Once the collagen solidified,
hCEctos were seeded on top. Cells were allowed to grow immersed in ectocervical primary cell culture medium for three days,
then the medium on top of the insert was removed to establish an air-liquid interface. The cultures were allowed to grow into 3D
multi-layered stratified epithelium for 16 days before infection experiments were initiated.

METHOD DETAILS
Infectivity assays
End1/EBE7 cells in six-well plates were infected with Ctr for 48 h and then scraped and collected in 15 mL tubes containing sterile

glass beads and lysed by vortexing. Dilutions of lysates were transferred to HeLa cells (ATCC, CCL-2) and incubated for 24 h at 35°C
and 5% CO,_ The cells were fixed in ice-cold methanol overnight at 4°C and immunostained with Ctr-major outer membrane protein
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(Ctr -MOMP) specific antibody and Cy3 labeled secondary antibody. Host cell nuclei were stained with Hoechst. The number and size
of chlamydial inclusions and host cells were analyzed with an automated microscope (Olympus Soft Imaging Solutions) as previously
described (Gurumurthy et al., 2010). Briefly, images were acquired with DAPI (4',6-diamidino-2-phenylindole) and Cy3 filter sets
(AHF-Analysetechnik) at the same position. Host nuclei positive for Hoechst and inclusions positive for Cy3 were automatically iden-
tified and number and size quantified using ScanR Analysis Software (Olympus Soft Imaging Solutions).

Invasion assay

Uninfected or Cir persistently infected hCEcto, End1/E6E7 and HT1080 cells were detached, counted and added in the upper
compartment of a 24-well transwell chamber pre-coated with Matrigel matrix (extracellular matrix) in serum-free medium (SFM).
The growth medium supplemented with 10% FCS, pyruvate and glutamine was placed in the bottom compartment of 24 well as
a chemoattractant. Cells were allowed to invade for 24 h at 37°C through extracellular matrix into 8 um polyethylene terephthalate
(PET) track-etched membrane (Corning, Cat# 353097). After incubation, cells in the transwell chamber were fixed in 3.7% parafor-
maldehyde (PFA), followed by cell permeabilization in 100% methanol and stained with 0.2% crystal violet. The microscopic images
were taken before and after swab of Matrigel and data was processed using Adobe lllustrator.

SDS-PAGE and western blotting

Cells grown in six-well plates and treated as per experimental requirement were washed with PBS and lysed with 300 pl of SDS sam-
ple buffer (3% 2-mercaptoethanol, 20% glycerine, 0.05% bromophenol blue, 3% SDS). Cell lysates were collected and boiled at
95°C with 1000 rpm shaking for 7 minutes. Samples were stored at —20°C until required. SDS-PAGE and western blotting were per-
formed as described earlier (Gurumurthy et al., 2010). Briefly, proteins from the cell lysates were resolved by SDS—polyacrylamide gel
electrophoresis (SDS-PAGE), transferred to polyvinylidene difluoride (PVDF) membranes (PerkinElmer Life Sciences), and blocked
with 3% milk powder in Tris-buffered saline (containing 0.5% Tween 20) for 30 min before incubation with the appropriate antibodies.
The bound primary antibodies were incubated with the corresponding HRP-conjugated secondary antibodies. Immunoreactive pro-
teins were detected on an X-ray film directly after addition of ECL reagent (Amersham Biosciences).

siRNA transfection and knockdown analysis

All siRNAs used in this study were purchased from QIAGEN. siRNA transfections were carried out as described previously (Gurumur-
thy et al., 2010). Briefly, 1 x 10° cells were seeded into each well of a 12-well plate 24 h before transfection. Cells were then trans-
fected with Hiperfect transfection reagent according to the manufacturer’s guidelines. In brief, 1.5 pl of specific siRNA (stock
concentration 20 pM) was added to RPMI without serum and incubated with 9 uL of Hiperfect in a total volume of 100 pl. After
10 to 15 min, the liposome-siRNA mixture was added to the cells with 1 mL of cell culture medium, which gave a final concentration
of siRNA of 25 nM. After 1 day, cells were trypsinized and seeded into new cell culture plates, depending on the experiments. Three
days after transfection, the cells were used for different experiments or to determine knockdown efficiency by RT-qPCR.

CRISPR/Cas9 Knockout Cell Line Generation

ETS1-targeting guide RNAs (gRNAs) were designed using the CHOP CHOP tool (http://chopchop.cbu.uib.no/) and cloned into the
pL-CRISPR.EFS.GFP plasmid (a gift from Benjamin Ebert; Addgene plasmid # 57818 (Heckl et al., 2014)) after digesting the vector
with Esp3l restriction enzyme. HEK293T cells (ATCC CRL3216; RRID: CVCL_0063) were transfected with gRNAs containing
pL-CRISPR.EFS.GFP plasmids together with packaging vectors in order to produce lentiviruses for transduction of End1 E6/E7.
Briefly, HEK293T cells were grown in 10 cm plates until 60%-70% confluent and transfected with lentiviral constructs containing
gRNA and lentiviral packaging plasmids (psPax2 and VSVG). The lentiviral vectors were dissolved in Opti-MEM medium together
with Fugene 6 transfection reagent and packaging plasmids psPax2 and pMD.2G (VSVG) and incubated for 20-30 min at RT. After
incubation, the liposomes formed were added to the cells in growth medium. Next day, the medium was replaced and left for another
24 hat37°Cin 5% CO,. Two days post-transfection lentiviral particles present in the medium were harvested, filtered (0.45 mm) and
used for End1 E6/E7 cell transduction. End1 E6/E7 cells were seeded in 10 cm plates one day before lentiviral particles were ready
for use. At 30%-40% confluence lentiviral particles were added onto cells together with 8 ul of polybrene (10 mg/ml), followed by
medium exchange after overnight incubation. After four days of lentivirus transduction, GFP-positive cells were FACS-sorted and
seeded as single cells into 96-well plates. Single cell clones of transduced cells were expanded, checked for mycoplasma and
used for further experiments.

Generation of the ERF overexpression cell lines

To generate ERF wild-type and mutants overexpression End1/EBE7 cell lines, constructs from plasmids provided by Prof. Mavrotha-
lasitis were recloned into pLenti-CMV-GFP destination vector using gateway recombination system. After plasmid confirmation
using enzymatic test digestion and Sanger sequencing obtained plasmids were used for lentiviral particles generation and transduc-
tion of End1/EBE?7 cell line as described above, followed by FACS sorting of GFP positive cells. Finally, cells were expanded, checked
for mycoplasma and used for further experiments.
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Cellular fractionation
Cells were trypsinized and washed twice with 1xPBS prior to cellular fractionation using NE-PER kit from Thermo Fisher according to
the manufacturer’s protocol.

SILAC labeling and labeling efficiency

End1/EBE7 cells were labeled by culturing for 8 passages in SILAC DMEM medium (GIBCO) containing either unlabeled (L) or labeled
(H) "3Cg"®N, L-Lysine/ '3Cq'*N,4 L-Arginine (Sigma) additionally supplemented with 10% dialyzed FCS (dFCS), 5 nM L-glutamine and
1 mM sodium pyruvate. Labeled and unlabeled cell populations were subjected to labeling efficiency test. For this, a small amount of
each cell population was lysed with Laemmli buffer, separated on SDS-PAGE gel, gel bands containing proteins were excised and
tryptic digested into peptides. Finally, digested peptides were desalted and applied for MALDI-TOF analysis to estimate the extent of
isotope-labeled amino acids incorporation.

Sample preparation for mass spectrometric (MS) analysis

Proteins were reduced with 10 mM DTT at room temperature for 30 min and alkylated with 50 mM iodoacetamide at room temper-
ature for 30 min in a dark room. Proteins were first digested by lysyl endopeptidase (LysC) at a LysC-to-protein ratio of 100:1 (w/w) for
3 h at room temperature. Then, the sample solution was diluted to a final concentration of 2 M urea with 50 mM ammonium bicar-
bonate. Trypsin digestion was performed at a trypsin-to-protein ratio of 100:1 (w/w) under constant agitation at room temperature for
16 h. Enzyme activity was quenched by acidification of the samples with trifluoroacetic acid (TFA). The peptides were desalted with
C18 Stage Tips (Rappsilber et al., 2003) prior to nanoLC-MS/MS analysis.

Phosphopeptide enrichment

The tryptic digests corresponding to 300 pg protein were desalted with big C18 Stage Tips packed with 10 mg of ReproSil-Pur 120
C18-AQ 5-um resin (Dr Maisch GmbH). Peptides were eluted with 300 pL of loading buffer (80% ACN (vol/vol) and 6% TFA (vol/vol) so
that the concentration of peptide was 1 pug/ul. Phosphopeptides were enriched using a microcolumn tip packed with 0.5 mg of TiO».
The TiO, tips were equilibrated with 20 uL of the loading buffer via centrifugation of 100 g. 6 x 50 uL of the sample was loaded on a
TiO, tip via centrifugation of 100 g. The TiO, column was washed with 20 pL of the loading buffer, followed by 20 uL of washing buffer
(50% ACN (vol/vol) and 0.1% TFA (vol/vol)). The bound phosphopeptides were eluted using successive elution with 30 pL of elution
buffer 1 (5% ammonia solution) and 30 pL of elution buffer 2 (5% piperidine) in series. Each fraction was collected into a fresh tube
containing 30 pL of 20% formic acid. 3 puL of 100% formic acid was added for further acidification of the samples. The phosphopep-
tides were desalted with C18 Stage Tips prior to nanoLC-MS/MS analysis.

NanoLC-MS/MS analysis

Peptides were separated on a 2 m monolithic column MonoCap C18 High Resolution 2000 (GL Sciences), 100 mm i.d. x 2,000 mm at
a flow rate of 300 nl/min on an EASY-nLC Il system (Thermo Fisher Scientific) by altering the gradient: 5%-6% B in 2 min, 6%-8% B in
28 min, 8%-30% B in 180 min, 30%-45% in 78 min, 45%-60% B in 2 min, 60%-95% B in 1 min. 360-min and 240-min gradient were
performed for whole proteome and phosphoproteome analyses, respectively. A Q Exactive plus instrument (Thermo Fisher Scientific)
was operated in the data-dependent mode with a full scan in the Orbitrap followed by top 10 MS/MS scans using higher-energy colli-
sion dissociation (HCD). For standard proteome analyses, the full scans were performed with a resolution of 70,000, a target value of
3x10% ions and a maximum injection time of 20 ms. The MS/MS scans were performed with a 17,500 resolution, a 1x10° target value
and a 20 ms maximum injection time. For phosphoproteome analyses, the full scans were performed with a resolution of 70,000, a
target value of 3x10° ions and a maximum injection time of 120 ms. The MS/MS scans were performed with a 35,000 resolution, a
5x10° target value and a 160 ms maximum injection time. Isolation window was set to 2 and normalized collision energy was 26.

Microarray analysis

Microarray experiments were performed as independent dual-color dye-reversal color-swap hybridizations. Total RNA was isolated
with Trizol according to the supplier’s protocol using glycogen as co-precipitant. Quality control and quantification of total RNA was
assessed using an Agilent 2100 Bioanalyzer (Agilent) and a NanoDrop (Kisker) 1000 UV-Vis spectrophotometer according to the sup-
plier’s protocol. RNA labeling was performed with the dual-color Quick-Amp Labeling Kit (Agilent Technologies). In brief, mMRNA was
reverse transcribed and amplified using an oligo-dTT7 promoter primer, and resulting cRNA was labeled with Cyanine 3-CTP or
Cyanine 5-CTP. After precipitation, purification, and quantification, 1.25 pg of each labeled cRNA was fragmented and hybridized
to whole genome human 4 x 44k multipack microarrays according to the supplier’s protocol (Agilent Technologies). Scanning of mi-
croarrays was performed with 5 um resolution using a G2565CA high-resolution laser microarray scanner (Agilent Technologies) with
XDR extended range. Microarray image data were analyzed with the Image Analysis/Feature Extraction software G2567AA v.
A.11.5.1.1 (Agilent Technologies) using default settings. The extracted MAGE-ML files were analyzed further with the Rosetta
Resolver Biosoftware, Build 7.2.2 SP1.31 (Rosetta Biosoftware). Ratio profiles comprising single hybridizations were combined in
an error-weighted fashion to create ratio experiments. A 0.5 log2 fold change expression cut-off for ratio experiments was applied
together with anti-correlation of ratio profiles, rendering the microarray analysis highly significant (p < 0.05). In addition, microarray
data was analyzed using the R package LIMMA (Ritchie et al., 2015). Microarray data have been deposited in the Gene Expression
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Omnibus (GEO; https://www.ncbi.nim.nih.gov/geo/) of the National Center for Biotechnology Information and can be accessed with
the GEO accession number GSE104166.

Immunofluorescent histochemistry

3D-Air Liquid cultures were fixed with 3.7% paraformaldehyde for 1 h at room temperature (RT) followed by washing with PBS twice,
embedded orthogonally in Histogel (HG-4000-144) inside a casting mold. Human tissues were extensively washed with PBS and
fixed using 3.7% PFA overnight at RT. Samples were subjected to dehydration in an ascending ethanol series followed by isopro-
panol and xylene (60 mins each) followed by paraffinization using a Leica TP1020 tissue processor. The paraffin blocks were gener-
ated inside a casting mold on a Paraffin console (Microm) and 5 pM sections made using a microtome (Microm). For immunostaining,
paraffin sections were deparaffinized and rehydrated, followed by antigen retrieval using antigen retrieval solution (Dako, # S1699).
Sections were blocked using blocking buffer (1% BSA and 2% FCS in PBS) for 1 h at RT. Primary antibodies were diluted in blocking
buffer and incubated for 90 mins at RT followed by five PSB washes before 1 h incubation with secondary antibodies diluted in block-
ing buffer along with Hoechst or Drag5. Sections were washed with PBS five times and mounted using Mowiol. Images were acquired
with a Leica TCS SP8 confocal microscope.

Epithelial cells grown on coverslips were fixed with 3.7% paraformaldehyde for 30 min at RT. Cells were permeabilized and
blocked with 0.5% Triton X-100 and 1% BSA in PBS. Primary antibodies were diluted in 1% BSA in PBS and incubated for 1 h at
RT followed by three washes in PSBT (0.1% Tween 20 in PBS), followed by 1 h incubation with secondary antibodies and phalloidin
were diluted in 1% BSA in PBS along with Hoechst or Drag5. Coverslips were washed three times with PBST and once with PBS and
mounted using Mowiol. Images were acquired on a Leica TCS SP8 confocal microscope. Images were processed with Adobe
Photoshop.

Automated microscopy

Images were analyzed by automated microscope from Olympus Biosystems. For each well, six positions were taken and fluoro-
chromes visualized using Cy3 and DAPI filters. The Ctr-MOMP image was analyzed for Ctr inclusion number and inclusion size.
DAPI was used to detect number of nuclei. All data was automatically identified and calculated by Scan R analysis software from
Olympus Biosystems, which was further processed in Microsoft Excel 2010.

QUANTIFICATION AND STATISTICAL ANALYSIS

Phosphoproteome/Proteome data analysis

Raw data were analyzed and processed using MaxQuant (v1.5.1.2). Search parameters included two missed cleavage sites, fixed
cysteine carbamidomethyl modification, and variable modifications including L-['3Cg, "®*N4]-arginine, L-['3Cg, ®N,]-lysine, methionine
oxidation, N-terminal protein acetylation, and asparagine/glutamine deamidation. In addition, phosphorylation of serine, threonine,
and tyrosine was searched as variable modifications for phosphoproteome analysis. The peptide mass tolerance was 6 ppm for MS
scans and 20 ppm for MS/MS scans. The match between runs was enabled. Database search was performed using Andromeda
against UniProt human database (October 2014) and Chlamydia database (February 2015) with common contaminants. False dis-
covery rate (FDR) was set to 1% at both peptide and protein level. For protein quantification, a minimum of two ratio counts was set
and the ‘re-quantify’ and ‘match between runs’ functions were enabled. Proteome data are available via ProteomeXchange with
identifier PXD011960.

Linear signature motif analysis

Phosphopeptide sequences with at least > 2 fold change were submitted to Motif-X (Schwartz and Gygi, 2005) online tool analysis
for the identification of over-represented linear signature motifs to predict upstream kinase regulators. The significance threshold
was set to p < 1076,

iGPS analysis - prediction of site-specific kinase-substrate relationship

To predict kinase-substrate relationships for all the upregulated and downregulated phosphosites based on short linear motifs and
protein-protein interactions iGPS software v1.0.1 analysis was performed (Song et al., 2012). For each site in a protein, all predicted
kinases get assigned a weight of 1/(number of predictions for this site and protein). Finally, weights are summed up for each kinase
included in the predictions and used to define the size of the circle in the kinome tree that was generated using KinMap online tool (Eid
etal., 2017).

GO enrichment analysis

GO enrichment analysis was performed with DAVID (Huang et al., 2009) online tool for 2 fold up and downregulated phosphosites
from nuclear fraction and total cell extract. The top five candidates were selected and combined in heatmap using TM4 (http://
mev.tm4.org).
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STRING protein-protein interaction analysis

The protein-protein interaction analyses of 2-fold regulated phosphosites were visualized using STRING 10 (Szklarczyk et al., 2015)
database with standard settings in confidence view. The interaction network was imported to Adobe lllustrator and modified as
shown in the Results section.

Ingenuity pathway analysis (IPA)

Canonical pathways and biological function of the significantly dysregulated genes and proteins identified in the microarrays and
phosphoproteome were investigated using QIAGEN’s Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City, https://www.
giagen.com/ingenuity). Overrepresentation of canonical pathways was obtained by Fisher’s exact test and corrected for multiple
testing by the Benjamini-Hochberg procedure. The ratio value is calculated based on the number of genes from the dataset that
map to the pathway divided by the number of total genes included in the pathway. Moreover, downstream target genes analysis
was performed to find genes regulated by selected hits from phosphoproteome analysis using microarray data as a reference.
The downstream effects analysis is based on prior knowledge of expected causal effects between genes and biological functions
stored in the Ingenuity® Knowledge Base. The analysis examines genes in the user’s dataset that are known to affect each biological
function and compares their direction of change to what is expected from the literature (https://www.ingenuity.com/).

GSEA

A published gene set of 365 EMT-associated genes (Groger et al., 2012) was used to perform GSEA on genes pre-ranked by gene
expression-based t-score comparing 48 h infected and non-infected End1 cells, using the fgsea R package (Sergushichev, 2016)
with 5,000 permutations.

Statistics

Results are presented as either mean + SEM (for normally distributed data) or median with inter-quartile range (for non-normally
distributed data). Datasets were compared by unpaired t test, nonparametric Mann-Whitney test or ANOVA. GraphPad Prism
was used for statistical tests and plots. P value < 0.05 was considered statistically significant unless otherwise specificed. Details
of tests used can be found in the figure legends. Log2 fold-changes of proteome and phosphoproteome data from two replicates
were tested for significance using the R package LIMMA (Ritchie et al., 2015). Full details on statistical analysis for proteome/phos-
phoproteome and gene expression data performed in R are provided in corresponding scripts (see Data and Software Availability).

DATA AND SOFTWARE AVAILABILITY

Microarray data presented in this paper have been deposited in the National Center for Biotechnology Information Gene Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO Series accession number GSE104166. The
mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Vizcaino et al.,
2016) partner repository with the dataset identifier PXD011960. R code used for pre-processing and analysis of data and generation
of plots has been deposited under https://github.com/HilmarBerger/Zadora_et_al_Phosphoproteome
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