2,140 research outputs found

    Rapid target selection of object categories based on verbs: Implications for language-categorization interactions

    Get PDF
    Although much is known about how nouns facilitate object categorization, very little is known about how verbs (e.g., posture verbs such as stand or lie) facilitate object categorization. Native Dutch speakers are a unique population to investigate this issue with because the configurational categories distinguished by staan (to stand) and liggen (to lie) are inherent in everyday Dutch language. Using an ERP component (N2pc), four experiments demonstrate that selection of posture verb categories is rapid (between 220–320 ms). The effect was attenuated, though present, when removing the perceptual distinction between categories. A similar attenuated effect was obtained in native English speakers, where the category distinction is less familiar, and when category labels were implicit for native Dutch speakers. Our results are among the first to demonstrate that category search based on verbs can be rapid, although extensive linguistic experience and explicit labels may not be necessary to facilitate categorization in this case

    Blur discrimination and its relation to blur-mediated depth perception

    Get PDF
    Retinal images of three-dimensional scenes often contain regions that are spatially blurred by different amounts, owing to depth variation in the scene and depth-of-focus limitations in the eye. Variations in blur between regions in the retinal image therefore offer a cue to their relative physical depths. In the first experiment we investigated apparent depth ordering in images containing two regions of random texture separated by a vertical sinusoidal border. The texture was sharp on one side of the border, and blurred on the other side. In some presentations the border itself was also blurred. Results showed that blur variation alone is sufficient to determine the apparent depth ordering. A subsequent series of experiments measured blur-discrimination thresholds with stimuli similar to those used in the depth-ordering experiment. Weber fractions for blur discrimination ranged from 0.28 to 0.56. It is concluded that the utility of blur variation as a depth cue is constrained by the relatively mediocre ability of observers to discriminate different levels of blur. Blur is best viewed as a relatively coarse, qualitative depth cue

    In Vitro Methane Production from Heifers Offered Four Bermudagrass Cultivars

    Get PDF
    Though bermudagrass (Cynodon dactylon [L.] Pers.) is one of the predominant warm-season perennial forage supporting the southeastern United States livestock production systems, little is known about its influence on parameters of ruminal metabolism, including carbon loss as methane. With the multitude of cultivars of this grass that have been developed and released, one may question whether the physiological cultivar differences will manifest varying results in digestive efficiency and subsequent methane emissions. Thus, the objective of this study was to evaluate in vitro methane (CH4) production as influenced by four bermudagrass cultivars. Ruminally-fistulated heifers (n = 4) were assigned randomly to one of four bermudagrass cultivars (Coastal [COS], Russell [RUS], Tifton 44 [T44], or Tifton 85 [T85]) for four 30-d in vivo periods in a Latin square design. On d 28 of each period, rumen fluid was collected from each heifer for use in CH4 production evaluation. Samples of each bermudagrass, corresponding to the cultivar fed, were weighed into duplicate 10-mL serum bottles and incubated at 39°C for 0, 2, 4, and 24 h. Following incubation, headspace samples were assayed for CH4 concentrations by gas chromatography. There was an interaction of cultivar and time (P \u3c 0.01). There was no difference among cultivars (P \u3c 0.05) at 0, 2, or 4 h of incubation. After 24 h of incubation, however, CH4 concentrations were greater (P \u3c 0.05) from T44 and T85 (7.7 and 6.2 mmol/L, respectively) than from RUS and COS (3.4 and 3.0 mmol/L, respectively). Results are interpreted to mean that cultivar type has an influence on the potential CH4 production of bermudagrass

    Characterization of Imaging Luminance Measurement Devices (ILMDs)

    Get PDF
    CIE 244:2021This document describes the elements, function and characterization of imaging luminance measuring devices (ILMDs). Furthermore, the calibration of ILMDs is described and some guidelines for their use are provided. Using ILMDs the projection of the luminance distribution of a scene can be recorded and made available for further evaluation. In addition to a simple documentation of measurements, the geometrical assignment of the image points into the object coordinate system often allows more complex calculations by combining luminance, directional and, if necessary, solid angle information (e.g. for glare evaluation). In addition to the flexible evaluation option, it is possible to acquire a large number of measured values quickly and, if necessary, even synchronously. Furthermore, the type of evaluation can also be coupled to the image content, i.e. the image areas to be evaluated can be determined in the image either by their position within the image or by their luminance value

    'H, I, J, K, L, M, N, O, PEE! Get it? Pee!': Siblings' shared humour in childhood

    Get PDF
    Humour is a central feature of social interactions in childhood that has received little attention. In a sample of 86 7‐year‐old children (M age = 7.82 years, SD = 0.80), we investigated patterns and individual differences in spontaneous humour observed during free play with their older (M age = 9.55 years, SD = 0.88) or their younger sibling (M age = 5.87 years, SD = 0.96). We coded children's instances, categories, and responses to humour. We investigated the nature of children's humour on the dyadic and individual level. Humour was common, and siblings’ production of humour was highly interdependent between play partners. Dyadic humour differed according to structural features of the sibling relationship (age, gender composition), and 7‐year‐old focal children's humour varied according to gender. This study contributes to knowledge regarding the dyadic nature of children's humour and individual patterns of humour beyond the preschool years

    Role of Network Topology in the Synchronization of Power Systems

    Get PDF
    We study synchronization dynamics in networks of coupled oscillators with bimodal distribution of natural frequencies. This setup can be interpreted as a simple model of frequency synchronization dynamics among generators and loads working in a power network. We derive the minimum coupling strength required to ensure global frequency synchronization. This threshold value can be efficiently found by solving a binary optimization problem, even for large networks. In order to validate our procedure, we compare its results with numerical simulations on a realistic network describing the European interconnected high-voltage electricity system, finding a very good agreement. Our synchronization threshold can be used to test the stability of frequency synchronization to link removals. As the threshold value changes only in very few cases when aplied to the European realistic network, we conclude that network is resilient in this regard. Since the threshold calculation depends on the local connectivity, it can also be used to identify critical network partitions acting as synchronization bottlenecks. In our stability experiments we observe that when a link removal triggers a change in the critical partition, its limits tend to converge to national borders. This phenomenon, which can have important consequences to synchronization dynamics in case of cascading failure, signals the influence of the uncomplete topological integration of national power grids at the European scale.Comment: The final publication is available at http://www.epj.org (see http://www.springerlink.com/content/l22k574x25u6q61m/

    Engineered Knottin Peptide Enables Noninvasive Optical Imaging of Intracranial Medulloblastoma

    Get PDF
    Central nervous system tumors carry grave clinical prognoses due to limited effectiveness of surgical resection, radiation, and chemotherapy. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. We demonstrate that mouse cerebellar medulloblastoma (MB) can be targeted and illuminated with a fluorescent, engineered cystine knot (knottin) peptide that binds with high affinity to α ÎČ , α ÎČ , and α ÎČ integrin receptors. This integrin-binding knottin peptide, denoted EETI 2.5F, was evaluated as a molecular imaging probe in both orthotopic and genetic models of MB. Following tail vein injection, fluorescence arising from dye-conjugated EETI 2.5F was localized to the tumor compared with the normal surrounding brain tissue, as measured by optical imaging. The imaging signal intensity correlated with tumor volume. Due to its unique ability to bind to α ÎČ integrin, EETI 2.5F showed superior in vivo and ex vivo brain tumor imaging contrast compared with other engineered integrin-binding knottin peptides and with c(RGDfK), a well-studied integrin-binding peptidomimetic. Next, EETI 2.5F was fused to an antibody fragment crystallizable (Fc) domain (EETI 2.5F-Fc) to determine if a larger integrin-binding protein could also target intracranial brain tumors. EETI 2.5F-Fc, conjugated to a fluorescent dye, illuminated MB following i.v. injection and was able to distribute throughout the tumor parenchyma. In contrast, brain tumor imaging signals were not detected in mice injected with EETI 2.5F proteins containing a scrambled integrin-binding sequence, demonstrating the importance of target specificity. These results highlight the potential of using EETI 2.5F and EETI 2.5-Fc as targeted molecular probes for brain tumor imaging

    Charge-Induced Fragmentation of Sodium Clusters

    Get PDF
    The fission of highly charged sodium clusters with fissilities X>1 is studied by {\em ab initio} molecular dynamics. Na_{24}^{4+} is found to undergo predominantly sequential Na_{3}^{+} emission on a time scale of 1 ps, while Na_{24}^{Q+} (5 \leq Q \leq 8) undergoes multifragmentation on a time scale \geq 0.1 ps, with Na^{+} increasingly the dominant fragment as Q increases. All singly-charged fragments Na_{n}^{+} up to size n=6 are observed. The observed fragment spectrum is, within statistical error, independent of the temperature T of the parent cluster for T \leq 1500 K. These findings are consistent with and explain recent trends observed experimentally.Comment: To appear in Physical Review Letter
    • 

    corecore