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We present and demonstrate an accurate, reliable, and computationally cheap method for the
calculation of free energies in Monte Carlo simulations of lattice models. Even in the critical re-
gion it yields good results with comparatively short simulation runs. The method combines upper
and lower bounds on the thermodynamic limit entropy density to yield not only an accurate esti-
mate of the free energy but a bound on the possible error as well. The method is demonstrated
on the two- and three-dimensional Ising models and the three-dimensional, three-states Potts

model.

Monte Carlo (MC) simulations have been used for
many years in the investigation of the thermodynamic
properties of lattice models. The commonly used impor-
tance sampling methods readily yield information on
quantities that are thermal averages of observables that
can be measured at each step of the simulation run, but
they do not yield an estimate for the partition function Z.
Thus, whereas order parameters, internal energy U, and
the like, are easily calculated, neither the free energy
F=—kpTInZ nor the entropy S=(U—F)/T are ob-
tained directly.

Because of the importance of the free energy in the con-
struction of phase diagrams, considerable effort has been
devoted to devising methods for its calculation with MC
methods. We refer the reader to the review article by
Binder.!

We present a method for the calculation of the free en-
ergies in importance sampling MC simulations of lattice
models that combines two conceptually different, but
computationally similar, techniques for entropy estima-
tion in one algorithm. The entropy estimates are based on
a cumulant expansion taken from the cluster-variation
method? (CVM) and on a recently proven global Markov
property.>

The method is easy to implement and is computational-
ly cheap. The free energy under a specified set of condi-
tions is obtained from data of one simulation under those
conditions, in contrast to the multiple simulations that are
required for other methods (thermodynamic integration,*
multistage sampling,’ and related methods®). It can be
implemented as an integral part of a standard Metropolis
MC algorithm, and it can even be used to monitor the free
energy during the course of the simulation. In this respect
our method differs completely from techniques based on
evaluation of transfer matrix eigenvalues, which can be
very accurate, but require a completely separate and
time-consuming calculation.” The method can be used on
large lattices and it yields accurate results with compara-
tively short simulation runs, even in the critical region. It
is applicable to lattice models with a finite number N of
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discrete degrees of freedom and translation-invariant in-
teractions.

It can be shown rigorously that the Markovian entropy
estimates, i.e., the ones based on the Markov property
mentioned above, correspond to a converging net of upper
bounds on the thermodynamic limit entropy density (i.e.,
entropy per lattice point).> The entropy formulas that
were derived in the CVM are either proven or conjectured
to be lower bounds.® By combining such upper and lower
bounds in one algorithm we obtain not only a very accu-
rate estimate of the free energy but a reliable indication of
the possible error as well.

We classify our method as a local states method, since
it uses measurements of local observables to estimate a
global quantity (the thermodynamic entropy density), and
to acknowledge its kinship to the approach of Meirovitch,®
who has previously considered our Markovian estimates
but based them on more heuristic arguments.

We demonstrate the reliability and accuracy of our
method by comparison with exact results for the two-
dimensional Ising model. In this case we use a CVM ex-
pression for the entropy density that is a proven lower
bound. For the three-dimensional Ising model the CVM
entropy formula is only conjectured to be a lower bound;
we present numerical results that lend support to this con-
jecture. To illustrate that the usefulness of the method is
not limited to simple Ising models we also present some
results on the free-energy density of the three-dimen-
sional, three-states Potts model.

Applications to the anisotropic next-nearest-neighbor
Ising model and to Widom’s microemulsion model'® are
currently in progress.

The method starts from the statistical definition of the
entropy Sy of a lattice L,

S =—kpg X plo)np(w,), 1)

where p(w.) denotes the probability of finding the
configuration w; on the lattice L. The quantity of ther-
modynamic interest is the thermodynamic limit s of
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|L|~'S,, where |L| denotes the number of lattice sites
of L. The problem in simulation practice is that Eq. (1)
can be used only to find S, if each configuration w; is en-
countered sufficiently often to determine p(w.) accurate-
ly. This will be the case only if the total number of
configurations N Il (v being the number of degrees of
freedom per lattice site) is fairly small, hence if the lattice
L is small. But for a small lattice, | L | ~'S; is not a good
estimate of the thermodynamic entropy density s.

To overcome this problem, we calculate entropy values
Sy for a few small sublattices X (henceforth called clus-
ters) embedded in the large lattice L on which the simula-
tion is performed, and we estimate s from these cluster en-
tropies by means of an extrapolation to the limit.

The extrapolation technique is an adaptation of the
cluster variation method,? which is an analytical method
for studying lattice models; it is based on the following re-
sult for s.!' If the thermodynamic system is invariant un-
der some group H of translations, then

s=Ly (- 3 (-1)irls,. @
PX Ycx
Here X* denotes a summation over all nonequivalent
clusters, equivalence being defined with respect to H; i.e.,
two clusters are equivalent if a translation of A maps one
onto the other; p is the number of nonequivalent lattice
sites.

This result can be used to generate estimates of s as
linear combinations of cluster entropies, by judiciously
truncating the sum X* over X.

As an explicit illustration, consider the ferromagnetic
Ising model on the square lattice. There is invariance un-
der all lattice translations, hence p =1. If we keep in Eq.
(2) only terms corresponding to clusters X that are a sub-
set of a nXxXm rectangular set R(n,m) of lattice points,
then s is estimated according to

S =SR(.m) ~SR(,m-1) ~SRG—=1.m) FSRG1=1,m-1).  (3)

This procedure for generating extrapolation formulas
can be considered as the basis of the analytic techniques
of the CVM, including the mean-field and quasichemical
methods (although this is not the traditional point of
view).'? This means that for most situations a judicious
choice (see above) of extrapolation formulas can be made
simply by consulting the extensive CVM literature.

To establish the degree of reliability of the result ob-
tained by the procedure described above, our method sup-
plements the CVM estimate with a Markovian estimate.
This is easily done within a single algorithm, since the
Markovian estimates, though based on an altogether
different reasoning, are also linear combinations of cluster
entropies. Specifically, s is estimated as a conditional
entropy, namely a difference of two cluster entropies
Sz — Sz, with Z having one lattice site more than Z'. The
cluster Z is chosen as part of an infinite, stepped, (d —1)-
dimensional dividing surface in the d-dimensional lattice
(see Figs. 1 and 2 for examples). This choice may be un-
derstood intuitively by considering the lattice with spiral-
ing boundary conditions: The sites of Z are chosen from
the ones that contribute to the corresponding winding-to-

site transfer matrix.

Combining the two independent estimates for s, we ob-
tain more than just a check on the result, since, as we
mentioned earlier, the Markovian estimate corresponds to
an upper bound on s, whereas the formulas that are used
in the CVM are typically lower bounds. We use the aver-
age of the two values as the best estimate; half their
difference bounds the intrinsic error.

The free-energy density f is calculated from the energy
per lattice site ¥ and the estimated entropy density s,
f=u—Ts. The variational principle, which states that
the difference u — T's is a minimum for a situation of ther-
modynamic equilibrium, makes its value insensitive to sta-
tistical fluctuations. We observe that the entropy bounds
fluctuate in tandem and that the above-mentioned insensi-
tivity also holds for our free-energy estimate. As a conse-
quence, good results for f are obtained from relatively
short simulation runs, even in the critical region.

This also means that it is possible to monitor the free
energy in the course of a long simulation, by applying the
technique to successive subsets of, e.g., 1000 lattice
configurations. This enables one to study the equilibration
process or fluctuations between metastable and stable
states.

A more extensive discussion of the theoretical aspects of
the method, focusing on application to two-dimensional
models, is given elsewhere. 13 To demonstrate the method,
we applied it in MC simulations of the two- and three-
dimensional Ising models and the three-dimensional,
three-states Potts model.

For the two-dimensional Ising model we used the CVM
formula Eq. (3) with n =4, m =2 in combination with the
Markovian estimate>*!3 s =Sy — Sy, with the clusters H
and H' as depicted in Fig. 1. Simulations were performed
on a 64x64 lattice, at various reduced temperatures, us-
ing the standard Metropolis algorithm. The cluster entro-
pies were calculated from an analysis of 10000 lattice
configurations by counting the occurrences of the various

I

FIG. 1. The clusters H and H'. @ and m: sites of the cluster
H; @: sites of the cluster H'.
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TABLE L Free-energy density f of the two-dimensional Ising
model. T, is the critical temperature of the infinite lattice. The
exact value fexact is also for the infinite lattice. fim is the result
of our local states method from simulations on a 64 x64 lattice.
The statistical error in the last decimal is given in parentheses.
Afism is the estimated bound on the intrinsic (systematic) error
of our result.

FIG. 2. The clusters D and D'. @ and ®: sites of the cluster D; Temperature  Free energy Free energy Error bound
@: sites of the cluster D'. T/T. ~Seac/ksT — fism/ksT Afism/ksT
0.50 1.763668 1.763668(1) 0.000001
0.60 1.472101 1.472100(1) 0.000001
cluster configurations @ to arrive at an estimate of the 0.70 "263 895 :2?3 gg‘:g:; 8838%:
cluster configuration probabilities p(w). ggg :(1)57 ; g; 1'(1)07 894(1) 0'000010
Table I compares the resulting estimates of the free- l. 00 0' 929695 0' 9295(1) 0‘ 0014
energy density with the results from Onsager’s analytical l‘l 0 0.880 055 0‘880 13(D) 0' 00030
expression. The agreement is seen to be excellent. The 1'50 0.78 6246 0'786 247(1) 0'000 005
exact value for — f/kgT occasionally exceeds the sum of 2.00 0.743755 0.743 753(1) 0.000001
the estimated value and the estimated error bound; this is 3.00 0.715121 0.715118(1) 0.000001
a consequence of the finite size of t'he simulation lattice 4.00 0.705 409 0.705406(1) 0.000001
and the finite duration of the simulation.
For the three-dimensional models the analog of the
CVM formula Eq. (3) is
s=Sh,m,k)—Sh,mk—1)—Sh,m—1,k)+S(h,m—1,k—1)
-Sh—1,mk)+Sh—1,mk—1)+Sh—1,m—1,k)—S(h—1,m—1,k—1). 4)

Here S(n,m,k) stands for the entropy of an nxmxk
block of lattice sites. For the Ising model Eq. (4) was
used with n =4, m =2, k =2 and for the Potts model with
n=3 m=2 k=2 For both models is was combined with
the Markovian estimate s =S, — Sy, with clusters D and
D' as depicted in Fig. 2. The simulations were performed
on an 30x30x30 lattice and in each run at ledst 10000
configurations were analyzed for the determination of the
cluster entropies.

The results for the Ising model are given in Table II and
compared with other results, compiled by Meirovitch and
believed to be of high accuracy.'* At and above 7. these

TABLE II.

Free-energy density f of the three-dimensional Ising model.

r
data clearly support the conjecture that the CVM esti-
mate is a lower bound on s. Below T, the situation is un-
resolved, especially since in this temperature regime the
results we use for comparison are known to overestimate
the free-energy density f. In any case the CVM estimate
is very accurate. The accuracy of our Markovian estimate
is in line with the related results reported by Meirovitch.'*
The results for the three-states Potts model are given in
Table III.

The simulations were done on Cray 1S-2300 and Cray
X-MP EA/164 computers. In practice, the accuracy that
can be achieved with our method is more likely to be

T. is given by

J/kpT:=0.22169 with J the coupling constant. fsm and fs have been taken from Ref. 12. fsm was ob-
tained with the stochastic model simulation method (see Ref. 15), fsr was obtained by a thermodynamic
integration over C/T where C is a series expansion estimate of the specific heat. The lower of the two
(i.e., higher value for — f/ksT) is believed to be the more accurate. Our result is denoted f,m and is ob-
tained from simulations on a 30%30x30 lattice. The statistical error in the last decimal is given in
parentheses. Afism is the estimated bound on the intrinsic (systematic) error of our result.

Temperature Free energy Free energy Free energy Error bound

T/Tc _fSM/kBT _fser/kBT _fl.rm/kET _'Aﬂ.ml/kBT
0.94336 0.79522 0.79520 0.79537(1) 0.00012
0.96387 0.78788 0.78782 0.78808(2) 0.00020
0.98093 0.78261 0.78248 0.78295(2) 0.00032
1.00000 0.77777 0.77787 0.77855(7) 0.001 40
1.02161 0.77334 0.77349 0.77388(2) 0.00063
1.04080 0.76982 0.76994 0.77024(2) 0.00047
1.05567 0.76728 0.767 39 0.76762(2) 0.00041
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TABLE III. Free-energy density f of the three-dimensional
three-states ferromagnetic Potts model. J is the coupling con-
stant. fim is the result of our method and is obtained from
simulations on a 30x30x 30 lattice. The statistical error of the
last decimal is given in parentheses. Afi,» is the estimated
bound on the intrinsic (systematic) error of our result.

Temperature Free energy Error bound

J/ksT _ﬁlm/kBT -AﬁIM/kBT
0.558 1.7836(2) 0.0011
0.556 1.7797(2) 0.0012
0.554 1.7759(2) 0.0013
0.552 1.7724(2) 0.0017
0.550 1.7692(2) 0.0023
0.548 1.7660(2) 0.0020
0.542 1.7565(2) 0.0017
0.536 1.7472(2) 0.0015
0.530 1.7381(2) 0.0014

determined by the available memory than by computing
speed. In theory the accuracy of our method can be im-
proved without limit, but to do so one must use larger
clusters, which means keeping track of more cluster
configurations. It proves, however, that surprisingly small
clusters already give very good results, which indicates
that the extrapolation techniques for estimating the entro-
py density are sufficiently powerful.

In summary, we have presented and demonstrated a
new method for the determination of free energies in
Monte Carlo simulations of lattice models with transla-
tional invariance. The method uses data from only one
run, is easily implemented into any standard Monte Carlo
computer code and yields surprisingly accurate results
with comparatively little computational effort in all test
cases. Its most important feature, however, is that it com-
bines two different and complementary approaches to en-
tropy estimation in one algorithm, and so enables an as-
sessment of the reliability of the result.

IK. Binder, J. Comp. Phys. 59, 1 (1985).

2R. Kikuchi, Phys. Rev. 81, 988 (1951); D. M. Burley, in Phase
Transitions and Critical Phenomena, edited by C. Domb and
M. S. Green (Academic, New York, 1972), Vol. 2, Chap. 9.

3S. Goldstein, R. Kuik, and A. G. Schlijper, Commum. Math.
Phys. (to be published).

4J. P. Hansen and L. Verlet, Phys. Rev. 184, 151 (1969).

5J. P. Valleau and D. N. Card, J. Chem. Phys. 57, 5457 (1972).

$G. Torrie and J. P. Valleau, J. Comp. Phys. 23, 187 (1977); C.
Bichara, J. P. Gaspard, and J. C. Matthieu, Phys. Lett. A
119, 462 (1987).

M. P. Nightingale and R. G. Caflisch, in Computer Simulation
Studies in Condensed Matter Physics, edited by D. P. Lan-
dau, K. K. Mon, and H. B. Schiittler, Springer Proceedings in

Physics, Vol. 33 (Springer-Verlag, Berlin, 1988).

8A. G. Schlijper, J. Stat. Phys. 40, 1 (1985).

9H. Meirovitch, Chem. Phys. Lett. 45, 389 (1977); J. Stat. Phys.
30, 681 (1983).

108, Widom, J. Chem. Phys. 84, 6943 (1986).

1A, G. Schlijper, Phys. Rev. B 27, 6841 (1983).

124, G. Schlijper, Ph.D. thesis, University of Groningen, The
Netherlands, 1985 (unpublished); Guozhong An, J. Stat.
Phys. 52, 727 (1988).

3A. G. Schlijper and B. Smit, J. Stat. Phys. 56, 247 (1989).

14H. Meirovitch, J. Phys. A 16, 839 (1983).

I5H. Meirovitch and Z. Alexandrowicz, J. Stat. Phys. 16, 121
(1977).



