48 research outputs found

    3D diffractive imaging of nanoparticle ensembles using an X-ray laser

    Get PDF
    We report the 3D structure determination of gold nanoparticles (AuNPs) by X-ray single particle imaging (SPI). Around 10 million diffraction patterns from gold nanoparticles were measured in less than 100 hours of beam time, more than 100 times the amount of data in any single prior SPI experiment, using the new capabilities of the European X-ray free electron laser which allow measurements of 1500 frames per second. A classification and structural sorting method was developed to disentangle the heterogeneity of the particles and to obtain a resolution of better than 3 nm. With these new experimental and analytical developments, we have entered a new era for the SPI method and the path towards close-to-atomic resolution imaging of biomolecules is apparent

    Synchronization of cytoplasmic and transferred mitochondrial ribosomal protein gene expression in land plants is linked to Telo-box motif enrichment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chloroplasts and mitochondria evolved from the endosymbionts of once free-living eubacteria, and they transferred most of their genes to the host nuclear genome during evolution. The mechanisms used by plants to coordinate the expression of such transferred genes, as well as other genes in the host nuclear genome, are still poorly understood.</p> <p>Results</p> <p>In this paper, we use nuclear-encoded chloroplast (cpRPGs), as well as mitochondrial (mtRPGs) and cytoplasmic (euRPGs) ribosomal protein genes to study the coordination of gene expression between organelles and the host. Results show that the mtRPGs, but not the cpRPGs, exhibit strongly synchronized expression with euRPGs in all investigated land plants and that this phenomenon is linked to the presence of a <it>telo</it>-box DNA motif in the promoter regions of mtRPGs and euRPGs. This motif is also enriched in the promoter regions of genes involved in DNA replication. Sequence analysis further indicates that mtRPGs, in contrast to cpRPGs, acquired <it>telo</it>-box from the host nuclear genome.</p> <p>Conclusions</p> <p>Based on our results, we propose a model of plant nuclear genome evolution where coordination of activities in mitochondria and chloroplast and other cellular functions, including cell cycle, might have served as a strong selection pressure for the differential acquisition of <it>telo</it>-box between mtRPGs and cpRPGs. This research also highlights the significance of physiological needs in shaping transcriptional regulatory evolution.</p

    Complex life forms may arise from electrical processes

    Get PDF
    There is still not an appealing and testable model to explain how single-celled organisms, usually following fusion of male and female gametes, proceed to grow and evolve into multi-cellular, complexly differentiated systems, a particular species following virtually an invariant and unique growth pattern. An intrinsic electrical oscillator, resembling the cardiac pacemaker, may explain the process. Highly auto-correlated, it could live independently of ordinary thermodynamic processes which mandate increasing disorder, and could coordinate growth and differentiation of organ anlage

    Of Bits and Bugs — On the Use of Bioinformatics and a Bacterial Crystal Structure to Solve a Eukaryotic Repeat-Protein Structure

    Get PDF
    Pur-α is a nucleic acid-binding protein involved in cell cycle control, transcription, and neuronal function. Initially no prediction of the three-dimensional structure of Pur-α was possible. However, recently we solved the X-ray structure of Pur-α from the fruitfly Drosophila melanogaster and showed that it contains a so-called PUR domain. Here we explain how we exploited bioinformatics tools in combination with X-ray structure determination of a bacterial homolog to obtain diffracting crystals and the high-resolution structure of Drosophila Pur-α. First, we used sensitive methods for remote-homology detection to find three repetitive regions in Pur-α. We realized that our lack of understanding how these repeats interact to form a globular domain was a major problem for crystallization and structure determination. With our information on the repeat motifs we then identified a distant bacterial homolog that contains only one repeat. We determined the bacterial crystal structure and found that two of the repeats interact to form a globular domain. Based on this bacterial structure, we calculated a computational model of the eukaryotic protein. The model allowed us to design a crystallizable fragment and to determine the structure of Drosophila Pur-α. Key for success was the fact that single repeats of the bacterial protein self-assembled into a globular domain, instructing us on the number and boundaries of repeats to be included for crystallization trials with the eukaryotic protein. This study demonstrates that the simpler structural domain arrangement of a distant prokaryotic protein can guide the design of eukaryotic crystallization constructs. Since many eukaryotic proteins contain multiple repeats or repeating domains, this approach might be instructive for structural studies of a range of proteins

    Terrestrische und semiterrestrische Ökosysteme

    Get PDF

    4MOST: Project overview and information for the First Call for Proposals

    Get PDF
    We introduce the 4-metre Multi-Object Spectroscopic Telescope (4MOST), a new high-multiplex, wide-field spectroscopic survey facility under development for the four-metre-class Visible and Infrared Survey Telescope for Astronomy (VISTA) at Paranal. Its key specifications are: a large field of view (FoV) of 4.2 square degrees and a high multiplex capability, with 1624 fibres feeding two low-resolution spectrographs (R=λ/Δλ6500R = \lambda/\Delta\lambda \sim 6500), and 812 fibres transferring light to the high-resolution spectrograph (R20000R \sim 20\,000). After a description of the instrument and its expected performance, a short overview is given of its operational scheme and planned 4MOST Consortium science; these aspects are covered in more detail in other articles in this edition of The Messenger. Finally, the processes, schedules, and policies concerning the selection of ESO Community Surveys are presented, commencing with a singular opportunity to submit Letters of Intent for Public Surveys during the first five years of 4MOST operations

    Role of Purα in the cellular response to ultraviolet-C radiation

    No full text
    Purα is a nucleic acid-binding protein with DNA-unwinding activity, which has recently been shown to have a role in the cellular response to DNA damage. We have investigated the function of Purα in Ultraviolet-C (UVC) radiation-induced DNA damage and nucleotide excision repair (NER). Mouse embryo fibroblasts from PURA-/- knockout mice, which lack Purα, showed enhanced sensitivity to UVC irradiation as assessed by assays for cell viability and clonogenicity compared to Purα positive control cultures. In reporter plasmid reactivation assays to measure the removal of DNA adducts induced in vitro by UVC, the Purα-negative cells were less efficient in DNA damage repair. Purα-negative cells were also more sensitive to UVC-induced DNA damage measured by Comet assay and showed a decreased ability to remove UVC-induced cyclobutane pyrimidine dimers. In wild-type mouse fibroblasts, expression of Purα is induced following S-phase checkpoint activation by UVC in a similar manner to the NER factor TFIIH. Moreover, co-immunoprecipitation experiments showed that Purα physically associates with TFIIH. Thus, Purα has a role in NER and the repair of UVC-induced DNA damage
    corecore