7,393 research outputs found

    Study of a precise positioning system of the COMSS Altimetric Satellite/Radar

    Get PDF
    A satellite trajectory was reconstructed at an accuracy level of 5-10 centimeters. The reconstruction of the orbit at a level of 1 to 2 meters, and comparison of all results for the two altitudes, 650 and 850 km, are also considered

    Chaotic itinerancy and power-law residence time distribution in stochastic dynamical system

    Full text link
    To study a chaotic itinerant motion among varieties of ordered states, we propose a stochastic model based on the mechanism of chaotic itinerancy. The model consists of a random walk on a half-line, and a Markov chain with a transition probability matrix. To investigate the stability of attractor ruins in the model, we analyze the residence time distribution of orbits at attractor ruins. We show that the residence time distribution averaged by all attractor ruins is given by the superposition of (truncated) power-law distributions, if a basin of attraction for each attractor ruin has zero measure. To make sure of this result, we carry out a computer simulation for models showing chaotic itinerancy. We also discuss the fact that chaotic itinerancy does not occur in coupled Milnor attractor systems if the transition probability among attractor ruins can be represented as a Markov chain.Comment: 6 pages, 10 figure

    Bell's Theorem and Nonlinear Systems

    Full text link
    For all Einstein-Podolsky-Rosen-type experiments on deterministic systems the Bell inequality holds, unless non-local interactions exist between certain parts of the setup. Here we show that in nonlinear systems the Bell inequality can be violated by non-local effects that are arbitrarily weak. Then we show that the quantum result of the existing Einstein-Podolsky-Rosen-type experiments can be reproduced within deterministic models that include arbitrarily weak non-local effects.Comment: Accepted for publication in Europhysics Letters. 14 pages, no figures. In the Appendix (not included in the EPL version) the author says what he really thinks about the subjec

    Neutrino-Nucleus Cross Section Measurements using Stopped Pions and Low Energy Beta Beams

    Full text link
    Two new facilities have recently been proposed to measure low energy neutrino-nucleus cross sections, the nu-SNS (Spallation Neutron Source) and low energy beta beams. The former produces neutrinos by pion decay at rest, while the latter produces neutrinos from the beta decays of accelerated ions. One of the uses of neutrino-nucleus cross section measurements is for supernova studies, where typical neutrino energies are 10s of MeV. In this energy range there are many different components to the nuclear response and this makes the theoretical interpretation of the results of such an experiment complex. Although even one measurement on a heavy nucleus such as lead is much anticipated, more than one data set would be still better. We suggest that this can be done by breaking the electron spectrum down into the parts produced in coincidence with one or two neutrons, running a beta beam at more than one energy, comparing the spectra produced with pions and a beta beam or any combination of these.Comment: 6 pages, 6 figure

    b-coloring is NP-hard on co-bipartite graphs and polytime solvable on tree-cographs

    Get PDF
    A b-coloring of a graph is a proper coloring such that every color class contains a vertex that is adjacent to all other color classes. The b-chromatic number of a graph G, denoted by \chi_b(G), is the maximum number t such that G admits a b-coloring with t colors. A graph G is called b-continuous if it admits a b-coloring with t colors, for every t = \chi(G),\ldots,\chi_b(G), and b-monotonic if \chi_b(H_1) \geq \chi_b(H_2) for every induced subgraph H_1 of G, and every induced subgraph H_2 of H_1. We investigate the b-chromatic number of graphs with stability number two. These are exactly the complements of triangle-free graphs, thus including all complements of bipartite graphs. The main results of this work are the following: - We characterize the b-colorings of a graph with stability number two in terms of matchings with no augmenting paths of length one or three. We derive that graphs with stability number two are b-continuous and b-monotonic. - We prove that it is NP-complete to decide whether the b-chromatic number of co-bipartite graph is at most a given threshold. - We describe a polynomial time dynamic programming algorithm to compute the b-chromatic number of co-trees. - Extending several previous results, we show that there is a polynomial time dynamic programming algorithm for computing the b-chromatic number of tree-cographs. Moreover, we show that tree-cographs are b-continuous and b-monotonic

    SUSY QCD one-loop effects in (un)polarized top-pair production at hadron colliders

    Full text link
    We study the effects of O(alpha_s) supersymmetric QCD (SQCD) corrections on the total production rate and kinematic distributions of polarized and unpolarized top-pair production in pp and p anti-p collisions. At the Fermilab Tevatron p anti-p collider, top-quark pairs are mainly produced via quark-antiquark annihilation, q anti-q -> t anti-t, while at the CERN LHC pp collider gluon-gluon scattering, g g -> t anti-t, dominates. We compute the complete set of O(alpha_s) SQCD corrections to both production channels and study their dependence on the parameters of the Minimal Supersymmetric Standard Model. In particular, we discuss the prospects for observing strong, loop-induced SUSY effects in top-pair production at the Tevatron Run II and the LHC.Comment: 56 pages, 29 figures, RevTeX
    • …
    corecore