2,371 research outputs found

    Four-loop free energy for the 2D O(n) nonlinear sigma-model with 0-loop and 1-loop Symanzik improved actions

    Full text link
    We calculate up to four loops the free energy of the two-dimensional (2D) O(n) nonlinear sigma-model regularized on the lattice with the 0-loop and 1-loop Symanzik improved actions. An effective coupling constant based on this calculation is defined.Comment: 26 pages, Revtex. More details about the calculation procedur

    Sub-Subgiants in the Old Open Cluster M67?

    Get PDF
    We report the discovery of two spectroscopic binaries in the field of the old open cluster M67 -- S1063 and S1113 -- whose positions in the color-magnitude diagram place them approximately 1 mag below the subgiant branch. A ROSAT study of M67 independently discovered these stars to be X-ray sources. Both have proper-motion membership probabilities greater than 97%; precise center-of-mass velocities are consistent with the cluster mean radial velocity. S1063 is also projected within one core radius of the cluster center. S1063 is a single-lined binary with a period of 18.396 days and an orbital eccentricity of 0.206. S1113 is a double-lined system with a circular orbit having a period of 2.823094 days. The primary stars of both binaries are subgiants. The secondary of S1113 is likely a 0.9 Mo main-sequence star, which implies a 1.3 Mo primary star. We have been unable to explain securely the low apparent luminosities of the primary stars; neither binary contain stars presently limited in radius by their Roche lobes. We speculate that S1063 and S1113 may be the products of close stellar encounters involving binaries in the cluster environment, and may define alternative stellar evolutionary tracks associated with mass-transfer episodes, mergers, and/or dynamical stellar exchanges

    Levels of protein C and soluble thrombomodulin in critically ill patients with acute kidney injury: a multicenter prospective observational study.

    Get PDF
    Endothelial dysfunction contributes to the development of acute kidney injury (AKI) in animal models of ischemia reperfusion injury and sepsis. There are limited data on markers of endothelial dysfunction in human AKI. We hypothesized that Protein C (PC) and soluble thrombomodulin (sTM) levels could predict AKI. We conducted a multicenter prospective study in 80 patients to assess the relationship of PC and sTM levels to AKI, defined by the AKIN creatinine (AKI Scr) and urine output criteria (AKI UO). We measured marker levels for up to 10 days from intensive care unit admission. We used area under the curve (AUC) and time-dependent multivariable Cox proportional hazard model to predict AKI and logistic regression to predict mortality/non-renal recovery. Protein C and sTM were not different in patients with AKI UO only versus no AKI. On intensive care unit admission, as PC levels are usually lower with AKI Scr, the AUC to predict the absence of AKI was 0.63 (95%CI 0.44-0.78). The AUC using log10 sTM levels to predict AKI was 0.77 (95%CI 0.62-0.89), which predicted AKI Scr better than serum and urine neutrophil gelatinase-associated lipocalin (NGAL) and cystatin C, urine kidney injury molecule-1 and liver-fatty acid-binding protein. In multivariable models, PC and urine NGAL levels independently predicted AKI (p=0.04 and 0.02) and PC levels independently predicted mortality/non-renal recovery (p=0.04). In our study, PC and sTM levels can predict AKI Scr but are not modified during AKI UO alone. PC levels could independently predict mortality/non-renal recovery. Additional larger studies are needed to define the relationship between markers of endothelial dysfunction and AKI

    Superpotential de-sequestering in string models

    Full text link
    Non-perturbative superpotential cross-couplings between visible sector matter and K\"ahler moduli can lead to significant flavour-changing neutral currents in compactifications of type IIB string theory. Here, we compute corrections to Yukawa couplings in orbifold models with chiral matter localised on D3-branes and non-perturbative effects on distant D7-branes. By evaluating a threshold correction to the D7-brane gauge coupling, we determine conditions under which the non-perturbative corrections to the Yukawa couplings appear. The flavour structure of the induced Yukawa coupling generically fails to be aligned with the tree-flavour structure. We check our results by also evaluating a correlation function of two D7-brane gauginos and a D3-brane Yukawa coupling. Finally, by calculating a string amplitude between n hidden scalars and visible matter we show how non-vanishing vacuum expectation values of distant D7-brane scalars, if present, may correct visible Yukawa couplings with a flavour structure that differs from the tree-level flavour structure.Comment: 37 pages + appendices, 8 figure

    Statistical mechanics of transcription-factor binding site discovery using Hidden Markov Models

    Full text link
    Hidden Markov Models (HMMs) are a commonly used tool for inference of transcription factor (TF) binding sites from DNA sequence data. We exploit the mathematical equivalence between HMMs for TF binding and the "inverse" statistical mechanics of hard rods in a one-dimensional disordered potential to investigate learning in HMMs. We derive analytic expressions for the Fisher information, a commonly employed measure of confidence in learned parameters, in the biologically relevant limit where the density of binding sites is low. We then use techniques from statistical mechanics to derive a scaling principle relating the specificity (binding energy) of a TF to the minimum amount of training data necessary to learn it.Comment: 25 pages, 2 figures, 1 table V2 - typos fixed and new references adde

    Observation of two relaxation mechanisms in transport between spin split edge states at high imbalance

    Full text link
    Using a quasi-Corbino geometry to directly study electron transport between spin-split edge states, we find a pronounced hysteresis in the I-V curves, originating from slow relaxation processes. We attribute this long-time relaxation to the formation of a dynamic nuclear polarization near the sample edge. The determined characteristic relaxation times are 25 s and 200 s which points to the presence of two different relaxation mechanisms. The two time constants are ascribed to the formation of a local nuclear polarization due to flip-flop processes and the diffusion of nuclear spins.Comment: Submitted to PR

    International Guillain-Barré Syndrome Outcome Study (IGOS): protocol of a prospective observational cohort study on clinical and biological predictors of disease course and outcome in Guillain-Barré syndrome

    Get PDF
    Guillain-Barré syndrome (GBS) is an acute polyradiculoneuropathy with a highly variable clinical presentation, course, and outcome. The factors that determine the clinical variation of GBS are poorly understood which complicates the care and treatment of individual patients. The protocol of the ongoing International GBS Outcome Study (IGOS), a prospective, observational, multi-centre cohort study that aims to identify the clinical and biological determinants and predictors of disease onset, subtype, course and outcome of GBS is presented here. Patients fulfilling the diagnostic criteria for GBS, regardless of age, disease severity, variant forms, or treatment, can participate if included within two weeks after onset of weakness. Information about demography, preceding infections, clinical features, diagnostic findings, treatment, course and outcome is collected. In addition, cerebrospinal fluid and serial blood samples for serum and DNA is collected at standard time points. The original aim was to include at least 1000 patients with a follow-up of 1-3 years. Data are collected via a web-based data entry system and stored anonymously. IGOS started in May 2012 and by January 2017 included more than 1400 participants from 143 active centres in 19 countries across 5 continents. The IGOS data/biobank is available for research projects conducted by expertise groups focusing on specific topics including epidemiology, diagnostic criteria, clinimetrics, electrophysiology, antecedent events, antibodies, genetics, prognostic modelling, treatment effects and long-term outcome of GBS. The IGOS will help to standardize the international collection of data and biosamples for future research of GBS. ClinicalTrials.gov Identifier: NCT01582763

    Monte Carlo Methods for Estimating Interfacial Free Energies and Line Tensions

    Full text link
    Excess contributions to the free energy due to interfaces occur for many problems encountered in the statistical physics of condensed matter when coexistence between different phases is possible (e.g. wetting phenomena, nucleation, crystal growth, etc.). This article reviews two methods to estimate both interfacial free energies and line tensions by Monte Carlo simulations of simple models, (e.g. the Ising model, a symmetrical binary Lennard-Jones fluid exhibiting a miscibility gap, and a simple Lennard-Jones fluid). One method is based on thermodynamic integration. This method is useful to study flat and inclined interfaces for Ising lattices, allowing also the estimation of line tensions of three-phase contact lines, when the interfaces meet walls (where "surface fields" may act). A generalization to off-lattice systems is described as well. The second method is based on the sampling of the order parameter distribution of the system throughout the two-phase coexistence region of the model. Both the interface free energies of flat interfaces and of (spherical or cylindrical) droplets (or bubbles) can be estimated, including also systems with walls, where sphere-cap shaped wall-attached droplets occur. The curvature-dependence of the interfacial free energy is discussed, and estimates for the line tensions are compared to results from the thermodynamic integration method. Basic limitations of all these methods are critically discussed, and an outlook on other approaches is given

    Kaluza-Klein supergravity on AdS_3 x S^3

    Full text link
    We construct a Chern-Simons type gauged N=8 supergravity in three spacetime dimensions with gauge group SO(4) x T_\infty over the infinite dimensional coset space SO(8,\infty)/(SO(8) x SO(\infty)), where T_\infty is an infinite dimensional translation subgroup of SO(8,\infty). This theory describes the effective interactions of the (infinitely many) supermultiplets contained in the two spin-1 Kaluza-Klein towers arising in the compactification of N=(2,0) supergravity in six dimensions on AdS_3 x S^3 with the massless supergravity multiplet. After the elimination of the gauge fields associated with T_\infty, one is left with a Yang Mills type gauged supergravity with gauge group SO(4), and in the vacuum the symmetry is broken to the (super-)isometry group of AdS_3 x S^3, with infinitely many fields acquiring masses by a variant of the Brout-Englert-Higgs effect.Comment: LaTeX2e, 24 pages; v2: references update
    corecore