89 research outputs found

    Utilization of Interactive Internet in High Education

    Get PDF
    The present work reports on the practical cooperation between two Universities from Hungary and Portugal. Students from Portugal are remotely accessing an experimental facility, which is physically in Hungary. The cooperation among these Higher Education establishments allowed the development and testing of a Remote Laboratory at the BME. This paper reports on the characteristics and initial testing of the Thermocouples Rise Time Measurement System and provides information on development and students' feedback

    Influence of Perineurial Cells and Toll-Like Receptors 2 and 9 on Herpes simplex Type 1 Entry to the Central Nervous System in Rat Encephalitis

    Get PDF
    Herpes simplex encephalitis (HSE) is a rare disease with high mortality and significant morbidity among survivors. We have previously shown that susceptibility to HSE was host-strain dependent, as severe, lethal HSE developed after injection of human Herpes simplex type 1 virus (HSV-1) into the whiskers area of DA rats, whereas PVG rats remained completely asymptomatic. In the present study we investigated the early immunokinetics in these strains to address the underlying molecular mechanisms for the observed difference. The virus distribution and the immunological responses were compared in the whiskers area, trigeminal ganglia and brain stem after 12 hours and the first four days following infection using immunohistochemistry and qRT-PCR. A conspicuous immunopathological finding was a strain-dependent difference in the spread of the HSV-1 virus to the trigeminal ganglia, only seen in DA rats already from 12 hpi. In the whiskers area infected perineurial cells were abundant in the susceptible DA strain after 2 dpi, whereas in the resistant PVG rats HSV-1 spread was confined only to the epineurium. In both strains activation of Iba1+/ED1+ phagocytic cells followed the distribution pattern of HSV-1 staining, which was visible already at 12 hours after infection. Notably, in PVG rats higher mRNA expression of Toll-like receptors (Tlr) -2 and -9, together with increased staining for Iba1/ED1 was detected in the whiskers area. In contrast, all other Tlr-pathway markers were expressed at higher levels in the susceptible DA rats. Our data demonstrate the novel observation that genetically encoded properties of the host nerve and perineurial cells, recruitment of phagocyting cells together with the low expression of Tlr2 and -9 in the periphery define the susceptibility to HSV-1 entry into the nervous system

    Genetic Diversity of Polymorphic Vaccine Candidate Antigens (Apical Membrane Antigen-1, Merozoite Surface Protein-3, and Erythrocyte Binding Antigen-175) in Plasmodium falciparum Isolates from Western and Central Africa

    Get PDF
    The malaria vaccine candidate antigens erythrocyte binding antigen 175 (EBA-175), merozoite surface protein 3 (MSP-3), and apical membrane antigen (AMA-1) from Plasmodium falciparum isolates from countries in central and west Africa were assessed for allelic diversity. Samples were collected on filter paper from 600 P. falciparum-infected symptomatic patients in Cameroon, Republic of Congo, Burkina Faso, Ghana, and Senegal and screened for class-specific amplification fragments. Genetic diversity, assessed by mean heterozygosity, was comparable among countries. We detected a clinical increase in eba 175 F-allele frequency from west to east across the study region. No statistical difference in msp-3 allele distribution between countries was observed. The ama-1 3D7 alleles were present at a lower frequency in central Africa than in West Africa. We also detected little to no genetic differentiation among sampling locations. This finding indicates that, at least at the level of resolution offered by restriction fragment length polymorphism analysis, these antigens showed remarkable genetic homogeneity throughout the region sampled, perhaps caused by balancing selection to maintain a diverse array of antigen haplotyes

    High Affinity Antibodies to Plasmodium falciparum Merozoite Antigens Are Associated with Protection from Malaria

    Get PDF
    Malaria kills almost 1 million people every year, but the mechanisms behind protective immunity against the disease are still largely unknown. In this study, surface plasmon resonance technology was used to evaluate the affinity (measured as k(d)) of naturally acquired antibodies to the Plasmodium falciparum antigens MSP2 and AMA1. Antibodies in serum samples from residents in endemic areas bound with higher affinities to AMA1 than to MSP2, and with higher affinities to the 3D7 allele of MSP2-3D7 than to the FC27 allele. The affinities against AMA1 and MSP2-3D7 increased with age, and were usually within similar range as the affinities for the monoclonal antibodies also examined in this study. The finding of MSP2-3D7 type parasites in the blood was associated with a tendency for higher affinity antibodies to both forms of MSP2 and AMA1, but this was significant only when analyzing antibodies against MSP2-FC27, and individuals infected with both allelic forms of MSP2 at the same time showed the highest affinities. Individuals with the highest antibody affinities for MSP2-3D7 at baseline had a prolonged time to clinical malaria during 40 weeks of follow-up, and among individuals who were parasite positive at baseline higher antibody affinities to all antigens were seen in the individuals that did not experience febrile malaria during follow up. This study contributes important information for understanding how immunity against malaria arises. The findings suggest that antibody affinity plays an important role in protection against disease, and differs between antigens. In light of this information, antibody affinity measurements would be a key assessment in future evaluation of malaria vaccine formulations

    Simultaneous Activation of Complement and Coagulation by MBL-Associated Serine Protease 2

    Get PDF
    The complement system is an important immune mechanism mediating both recognition and elimination of foreign bodies. The lectin pathway is one pathway of three by which the complement system is activated. The characteristic protease of this pathway is Mannan-binding lectin (MBL)-associated serine protease 2 (MASP2), which cleaves complement proteins C2 and C4. We present a novel and alternative role of MASP2 in the innate immune system. We have shown that MASP2 is capable of promoting fibrinogen turnover by cleavage of prothrombin, generating thrombin. By using a truncated active form of MASP2 as well as full-length MASP2 in complex with MBL, we have shown that the thrombin generated is active and can cleave both factor XIII and fibrinogen, forming cross-linked fibrin. To explore the biological significance of these findings we showed that fibrin was covalently bound on a bacterial surface to which MBL/MASP2 complexes were bound. These findings suggest that, as has been proposed for invertebrates, limited clotting may contribute to the innate immune response

    Building a Healthcare Alliance for Resourceful Medicine Offensive Against Neoplasms in hematologY added value framework for hematologic malignancies: a comparative analysis of existing tools

    Get PDF
    OBJECTIVES: The Innovative Medicines Initiative-funded, multistakeholders project Healthcare Alliance for Resourceful Medicine Offensive Against Neoplasms in hematologY (HARMONY) created a task force involving patient organizations, medical associations, pharmaceutical companies, and health technology assessment/regulator agencies' representatives to evaluate the suitability of previously established value frameworks (VFs) for assessing the clinical and societal impact of new interventions for hematologic malignancies (HMs). METHODS: Since the HARMONY stakeholders identified the inclusion of patients' points of view on evaluating VFs as a priority, surveys were conducted with the patient organizations active in HMs and part of the HARMONY network, together with key opinion leaders, pharmaceutical companies, and regulators, to establish which outcomes were important for each HM. Next, to evaluate VFs against the sources of information taken into account (randomized clinical trials, registries, real-world data), structured questionnaires were created and filled by HARMONY health professionals to specify preferred data sources per malignancy. Finally, a framework evaluation module was built to analyze existing clinical VFs (American Society of Clinical Oncology, European Society of Medical Oncology, Magnitude of Clinical Benefit Scale, Institut fĂŒr QualitĂ€t und Wirtschaftlichkeit im Gesundheitswesen, Institute for Clinical and Economic Review, National Comprehensive Cancer Network Evidence Blocks, and patient-perspective VF). RESULTS: The comparative analysis describes challenges and opportunities for the use of each framework in the context of HMs and drafts possible lines of action for creating or integrating a more specific, patient-focused clinical VF for HMs. CONCLUSIONS: None of the frameworks meets the HARMONY goals for a tool that applies to HMs and assesses in a transparent, reproducible, and systematic way the therapeutic value of innovative health technologies versus available alternatives, taking a patient-centered approach and using real-world evidence

    Using rapid diagnostic tests as source of malaria parasite DNA for molecular analyses in the era of declining malaria prevalence

    Get PDF
    BACKGROUND: Malaria prevalence has recently declined markedly in many parts of Tanzania and other sub-Saharan African countries due to scaling-up of control interventions including more efficient treatment regimens (e.g. artemisinin-based combination therapy) and insecticide-treated bed nets. Although continued molecular surveillance of malaria parasites is important to early identify emerging anti-malarial drug resistance, it is becoming increasingly difficult to obtain parasite samples from ongoing studies, such as routine drug efficacy trials. To explore other sources of parasite DNA, this study was conducted to examine if sufficient DNA could be successfully extracted from malaria rapid diagnostic tests (RDTs), used and collected as part of routine case management services in health facilities, and thus forming the basis for molecular analyses, surveillance and quality control (QC) testing of RDTs. METHODS: One hyper-parasitaemic blood sample (131,260 asexual parasites/ÎŒl) was serially diluted in triplicates with whole blood and blotted on RDTs. DNA was extracted from the RDT dilution series, either immediately or after storage for one month at room temperature. The extracted DNA was amplified using a nested PCR method for Plasmodium species detection. Additionally, 165 archived RDTs obtained from ongoing malaria studies were analysed to determine the amplification success and test applicability of RDT for QC testing. RESULTS: DNA was successfully extracted and amplified from the three sets of RDT dilution series and the minimum detection limit of PCR was <1 asexual parasite/ÎŒl. DNA was also successfully amplified from (1) 70/71 (98.6%) archived positive RDTs (RDTs and microscopy positive) (2) 52/63 (82.5%) false negative RDTs (negative by RDTs but positive by microscopy) and (3) 4/24 (16.7%) false positive RDTs (positive by RDTs but negative by microscopy). Finally, 7(100%) negative RDTs (negative by RDTs and microscopy) were also negative by PCR. CONCLUSION: This study showed that DNA extracted from archived RDTs can be successfully amplified by PCR and used for detection of malaria parasites. Since Tanzania is planning to introduce RDTs in all health facilities (and possibly also at community level), availability of archived RDTs will provide an alternative source of DNA for genetic studies such as continued surveillance of parasite resistance to anti-malarial drugs. The DNA obtained from RDTs can also be used for QC testing by detecting malaria parasites using PCR in places without facilities for microscopy

    Characterization of Within-Host Plasmodium falciparum Diversity Using Next-Generation Sequence Data

    Get PDF
    Our understanding of the composition of multi-clonal malarial infections and the epidemiological factors which shape their diversity remain poorly understood. Traditionally within-host diversity has been defined in terms of the multiplicity of infection (MOI) derived by PCR-based genotyping. Massively parallel, single molecule sequencing technologies now enable individual read counts to be derived on genome-wide datasets facilitating the development of new statistical approaches to describe within-host diversity. In this class of measures the FWS metric characterizes within-host diversity and its relationship to population level diversity. Utilizing P. falciparum field isolates from patients in West Africa we here explore the relationship between the traditional MOI and FWS approaches. FWS statistics were derived from read count data at 86,158 SNPs in 64 samples sequenced on the Illumina GA platform. MOI estimates were derived by PCR at the msp-1 and -2 loci. Significant correlations were observed between the two measures, particularly with the msp-1 locus (P = 5.92×10−5). The FWS metric should be more robust than the PCR-based approach owing to reduced sensitivity to potential locus-specific artifacts. Furthermore the FWS metric captures information on a range of parameters which influence out-crossing risk including the number of clones (MOI), their relative proportions and genetic divergence. This approach should provide novel insights into the factors which correlate with, and shape within-host diversity

    Changes in the levels of cytokines, chemokines and malaria-specific antibodies in response to Plasmodium falciparum infection in children living in sympatry in Mali

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Fulani are known to be less susceptible to <it>Plasmodium falciparum </it>malaria as reflected by lower parasitaemia and fewer clinical symptoms than other sympatric ethnic groups. So far most studies in these groups have been performed on adults, which is why little is known about these responses in children. This study was designed to provide more information on this gap.</p> <p>Methods</p> <p>Circulating inflammatory factors and antibody levels in children from the Fulani and Dogon ethnic groups were measured. The inflammatory cytokines; interleukin (IL)-1beta, IL-6, IL-8, IL-10, IL-12p70, tumor necrosis factor (TNF) and the chemokines; regulated on activation normal T cell expressed and secreted (RANTES), monokine-induced by IFN-gamma (MIG), monocyte chemotactic protein (MCP)-1 and IFN-gamma-inducible protein (IP)-10 were measured by cytometric bead arrays. The levels of interferon (IFN)-alpha, IFN-gamma and malaria-specific antibodies; immunoglobulin (Ig) G, IgM and IgG subclasses (IgG1-IgG4) were measured by ELISA.</p> <p>Results</p> <p>The results revealed that the Fulani children had higher levels of all tested cytokines compared to the Dogon, in particular IFN-gamma, a cytokine known to be involved in parasite clearance. Out of all the tested chemokines, only MCP-1 was increased in the Fulani compared to the Dogon. When dividing the children into infected and uninfected individuals, infected Dogon had significantly lower levels of RANTES compared to their uninfected peers, and significantly higher levels of MIG and IP-10 as well as MCP-1, although the latter did not reach statistical significance. In contrast, such patterns were not seen in the infected Fulani children and their chemokine levels remained unchanged upon infection compared to uninfected counterparts. Furthermore, the Fulani also had higher titres of malaria-specific IgG and IgM as well as IgG1-3 subclasses compared to the Dogon.</p> <p>Conclusions</p> <p>Taken together, this study demonstrates, in accordance with previous work, that Fulani children mount a stronger inflammatory and antibody response against <it>P. falciparum </it>parasites compared to the Dogon and that these differences are evident already at an early age. The inflammatory responses in the Fulani were not influenced by an active infection which could explain why less clinical symptoms are seen in this group.</p
    • 

    corecore