180 research outputs found

    Symmetries and Symmetry Breaking

    Full text link
    In understanding the world of matter, the introduction of symmetry principles following experimentation or using the predictive power of symmetry principles to guide experimentation is most profound. The conservation of energy, linear momentum, angular momentum, charge, and CPT involve fundamental symmetries. All other conservation laws are valid within a restricted subspace of the four interactions: the strong, the electromagnetic, the weak, and the gravitational interaction. In this paper comments are made regarding parity violation in hadronic systems, charge symmetry breaking in two nucleon and few nucleon systems, and time-reversal-invariance in hadronic systems.Comment: 5 Pages, LaTeX, 2 PostScript figures. Talk at 17th International IUPAP Conference on Few-body Problems in Physics, June 5-10, 2003, Durham, North Carolina, US

    A Monitor of Beam Polarization Profiles for the TRIUMF Parity Experiment

    Get PDF
    TRIUMF experiment E497 is a study of parity violation in pp scattering at an energy where the leading term in the analyzing power is expected to vanish, thus measuring a unique combination of weak-interaction flavour conserving terms. It is desired to reach a level of sensitivity of 2x10^-8 in both statistical and systematic errors. The leading systematic errors depend on transverse polarization components and, at least, the first moment of transverse polarization. A novel polarimeter that measures profiles of both transverse components of polarization as a function of position is described.Comment: 19 pages LaTeX, 10 PostScript figures. To appear in Nuclear Instruments and Methods in Physics Research, Section

    Parity Violation in Proton-Proton Scattering at 221 MeV

    Full text link
    TRIUMF experiment 497 has measured the parity violating longitudinal analyzing power, A_z, in pp elastic scattering at 221.3 MeV incident proton energy. This paper includes details of the corrections, some of magnitude comparable to A_z itself, required to arrive at the final result. The largest correction was for the effects of first moments of transverse polarization. The addition of the result, A_z=(0.84 \pm 0.29 (stat.) \pm 0.17 (syst.)) \times 10^{-7}, to the pp parity violation experimental data base greatly improves the experimental constraints on the weak meson-nucleon coupling constants h^{pp}_\rho and h^{pp}_\omega, and has implications for the interpretation of electron parity violation experiments.Comment: 17 pages RevTeX, 14 PostScript figures. Revised version with additions suggested by Phys. Rev.

    Parity nonconserving observables in thermal neutron capture on a proton

    Get PDF
    We calculate parity nonconserving observables in the processes where a neutron is captured on a proton at the threshold energy radiating a photon. Various potential models such as Paris, Bonn and Argonne v18v18 are used for the strong interactions, and the meson-exchange description is employed for the weak interactions between hadrons. The photon polarization PγP_\gamma in the unpolarized neutron capture process and photon asymmetry AγA_\gamma in the polarized neutron capture process are obtained in terms of the weak meson-nucleon coupling constants. AγA_\gamma turns out to be basically insensitive to the employed strong interaction models and thus can be uniquely determined in terms of the weak coupling constants, but PγP_\gamma depends significantly on the strong interaction models.Comment: 13 pages, 11 eps figure

    Parity Violation in Proton-Proton Scattering at 221 MeV

    Full text link
    The parity-violating longitudinal analyzing power, Az, has been measured in pp elastic scattering at an incident proton energy of 221 MeV. The result obtained is Az =(0.84 +/- 0.29 (stat.) +/- 0.17 (syst.)) x 10^{-7}. This experiment is unique in that it selects a single parity violating transition amplitude, 3P2-1D2, and consequently directly constrains the weak meson-nucleon coupling constant h^pp_rho When this result is taken together with the existing pp parity violation data, the weak meson-nucleon coupling constants h^pp_rho and h^pp_omega can, for the first time, both be determined.Comment: 8 pages RevTeX4, 3 PostScript figures. Conclusion revised. New information about weak coupling constants adde

    Parity nonconserving two-pion exchange in elastic proton-proton scattering

    Full text link
    Parity nonconserving two-pion exchange in elastic pp scattering is investigated in the presence of phenomenological strong distortions in various models. Parity violation is included in the nucleon-pion vertex considering NN and N Delta(1232) intermediate states in box and crossed box diagrams. Using the derived parity nonconserving two-pion exchange potential we calculate the longitudinal analyzing power A_L in elastic pppp scattering. The predicted effect is of the same order as vector meson exchanges.Comment: 13 pages, 8 eps figure

    Cooler Experiment Preparation

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440

    Measurement of the Total Cross Section for the Reaction p + p → p + p + pio

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Nuclear Parity-Violation in Effective Field Theory

    Get PDF
    We reformulate the analysis of nuclear parity-violation (PV) within the framework of effective field theory (EFT). To order Q, the PV nucleon-nucleon (NN) interaction depends on five a priori unknown constants that parameterize the leading-order, short-range four-nucleon operators. When pions are included as explicit degrees of freedom, the potential contains additional medium- and long-range components parameterized by PV piNN couplings. We derive the form of the corresponding one- and two-pion-exchange potentials. We apply these considerations to a set of existing and prospective PV few-body measurements that may be used to determine the five independent low-energy constants relevant to the pionless EFT and the additional constants associated with dynamical pions. We also discuss the relationship between the conventional meson-exchange framework and the EFT formulation, and argue that the latter provides a more general and systematic basis for analyzing nuclear PV.Comment: 67 Page Latex file with typos correcte
    corecore