220 research outputs found

    Social health inequalities : a French analysis based on the migrant population.

    Get PDF
    Using a representative survey of the French population, the Health, Health Care and Insurance Survey (ESPS: “EnquĂȘte sur la santĂ© et la protection sociale”), this article aims to study the links between migration, region of origin and health status in France. Firstly, we have compared the health status between migrants and the native population in discerning an identifiable difference between first-generation and second-generation migrants. Following this, in order to explain the heterogeneity of health status amongst the migrant population, we have refined our analysis by integrating their country of origin into our estimation and then exploring the health differences between individuals who have emigrated from South-East Mediterranean (SEM) countries and individuals who have emigrated from all other countries. Our findings show that there exist health inequalities that are related to immigration, when compared with the health status of the native population in France. First and second generation migrants have a higher risk than the native French born population to report a poor health status. By introducing country of origin into our analysis we are able to confirm the health heterogeneity within both groups of migrants. Individuals coming from SEM countries are more likely to report poor health status than the native French born population (for both generation migrants) and this risk seems significantly higher for individuals who have emigrated from Turkey. These inequalities are partly explained by the poor socio-economic conditions of the migrant population and a general lack of social integration in France.Health Care; Immigration; France;

    Berkeley and the Mind of God

    Get PDF
    I tackle a troubling question of interpretation: Does Berkeley\u27s God feel pain? Berkeley\u27s anti-skepticism seems to bar him from saying that God does not feel pain, for this would mean there is something to reality \u27beyond\u27 the perceptible. Yet Berkeley\u27s concerns for common sense and orthodoxy bar him from saying that God does have an idea of pain. For Berkeley to have an idea of pain just is to suffer it, and an immutable God cannot suffer. Thus solving the pain problem requires answers to further questions: What are God\u27s perceptions, for Berkeley? What are God\u27s acts of will? How are the two related and how is God\u27s mind related to humans\u27 as a result? I argue that Berkeley\u27s God does not feel pain by way of answering these questions. I also argue that saying so leaves Berkeley saddled with neither skepticism nor heterodoxy. Berkeley is able to preserve God\u27s immutability, God\u27s personality, and reality\u27s not lying across some \u27veil of perception.\u27 Berkeley can dissolve the pain problem since God does not perceive passively as we do. What it means to say God \u27perceives\u27 is just that God\u27s acts of will are intentional. Yet neither God nor reality is thereby placed across some skeptical chasm. God\u27s acts of will contain their content in virtue of and are of necessity made manifest in each human being\u27s perceptions. The \u27real world\u27 is our world: the contents of God\u27s mind are simply made plain to human beings by way of their experience of the laws of nature. God does not occupy the same perspective with respect to God\u27s own mind, however: God is a being purely active. By way of understanding the laws of nature as a language, Berkeley renders God more personal than other conceptions we might call to mind. Thus Berkeley\u27s God is not a blind \u27force of nature,\u27 despite God\u27s not feeling pain. God is rather a personal mind which continuously communicates with humans by way of symbols, namely human perceptions. Insofar as human beings are passive, this is the way with which we must be communicated. The cost to my interpretation is that Berkeley cannot literally vindicate the utterances of the vulgar : talk of God\u27s feeling pain, delighting in righteousness or grieving over wickedness is at best metaphorical and at worst misleading. Strictly speaking the only contents of God\u27s mind are God\u27s perceptions and God\u27s acts of will, and neither class of contents contains such feelings

    Quantification des sources de méthane en Sibérie par inversion atmosphérque à la méso-échelle

    Get PDF
    Anthopogenic and natural methane emissions in Siberia significantly contribute to theglobal methane budget, but the magnitude of these emissions is uncertain (3–11% of globalemissions). To the South, anthropogenic emissions are related to big urban centres. To theNorth, oil and gas extraction in West Siberia is responsible for conspicuous point sources.These regions are also covered by large natural wetlands emitting methane during the snowfreeseason, roughly from May to September. Regional atmospheric inversions at a meso-scaleprovide a mean for improving our knowledge on all emission process. But inversions sufferfrom the uncertainties in the assimilated observations, in the atmospheric transport modeland in the emission magnitude and distribution. I developp a new inversion method based onerror statistic marginalization in order to account for these uncertainties. I test this methodon case study and explore its robustness. I then apply it to Siberia. Using measurements ofmethane atmospheric concentrations gathered at Siberian surface observation sites, I founda regional methane budget in Siberia of 5–28 TgCH4.a−1 (1–5% of global emissions). Thisimplies a reduction of 50% in the uncertainties on the regional budget. With the new method,I also can detect emission patterns at a resolution of a few thousands km2 and emissionvariability at a resolution of 2–4 weeks.Les Ă©missions anthropiques et naturelles de mĂ©thane en SibĂ©rie contribuent de maniĂšrenotable, mais mal quantifiĂ©e au budget mondial de mĂ©thane (3–11% des Ă©missions mondiales).Au Sud de la rĂ©gion, les Ă©missions anthropiques sont liĂ©es aux grands centres urbains.Au Nord, l’extraction de gaz et de pĂ©trole en SibĂ©rie occidentale induit d’importantessources anthropiques ponctuelles. Ces rĂ©gions sont aussi couvertes de vastes zones humidesnaturelles Ă©mettant du mĂ©thane durant l’étĂ© (typiquement de mai Ă  septembre). Nous utilisonsdes inversions atmosphĂ©riques rĂ©gionales Ă  la mĂ©so-Ă©chelle pour mieux comprendreles contributions de chaque processus dans le budget sibĂ©rien. Les inversions souffrent desincertitudes dans les observations, dans la simulation du transport et dans l’amplitude et ladistribution des Ă©missions. Pour prendre en compte ces incertitudes, je dĂ©veloppe une nouvellemĂ©thode d’inversion basĂ©e sur une marginalisation des statistiques d’erreurs. Je testecette mĂ©thode et documente sa robustesse sur un cas test. Je l’applique ensuite Ă  la SibĂ©rie.À l’aide de mesures de concentrations atmosphĂ©riques de mĂ©thane collectĂ©es par des sitesd’observation de surface en SibĂ©rie, j’estime le budget rĂ©gional de mĂ©thane sibĂ©rien Ă  5–28 TgCH4.a−1 (1–5% des Ă©missions mondiales), soit une rĂ©duction de 50% des incertitudespar rapport aux prĂ©cĂ©dentes Ă©tudes dans la rĂ©gion. GrĂące Ă  cette mĂ©thode, je suis de plus enmesure de dĂ©tecter des structures d’émissions par zones de quelques milliers de km2 et leurvariabilitĂ© Ă  une rĂ©solution de 2–4 semaines

    Modélisation par des méthodes lagrangiennes du transport sédimentaire induit par les mascarets

    Get PDF
    The work performed during this thesis is a part of the Mascaret ANR project, which aims to understand the phenomenon of tidal bore, the study of its impact on the environment and its sensitivity to changes in that environment. The contribution of this thesis lies solely in the numerical part of this project. Only the sediment transport caused by the tidal bore is discussed. The goal is to build a generic numerical model of sediment transport which can therefore be applied to the specific case of tidal bores. Three methods are explored, a first for individual tracking of sediment grains and two to model the concentration of grains in the flow. The first method considers the smallest scales and will be called tracking method and consists of individual tracking of sediment grains. The second method, called particle method, focuses on larger scales and the transport of local concentration of sedimentary grains. The third method, which we call moments method, will focus on the largest scales, carrying a cloud of sediment grains as a whole using a single numerical particle characterized by the moments of its internal concentration distribution. This will characterize the local sediment transport process occurring during the passage of a tidal bore. Two undulating bores will be studied whose Froude numbers are close. It will be shown in particular that the Froude number is not a criterion to deduce the intensity of the induced tidal bores sediment transport.Le travail effectuĂ© au cours de cette thĂšse s’inscrit au sein du projet ANR Mascaret, dont l’objectif est la comprĂ©hension du phĂ©nomĂšne de mascaret, l’étude de ses consĂ©quences sur l’environnement et sa sensibilitĂ© aux modifications de cet environnement. La contribution de cette thĂšse s’inscrit uniquement dans la partie numĂ©rique de ce projet. Seul l’aspect transport sĂ©dimentaire causĂ© par le mascaret sera abordĂ©. Le but est de construire un modĂšle numĂ©rique de transport sĂ©dimentaire gĂ©nĂ©ral qui pourra notamment s’appliquer au cas du mascaret. Trois mĂ©thodes numĂ©riques sont explorĂ©es, une premiĂšre permettant le suivi individuel des grains sĂ©dimentaires et deux autres permettant de suivre l’évolution de la concentration en grains au sein de l’écoulement. La premiĂšre mĂ©thode considĂ©rera les plus petites Ă©chelles et sera appelĂ©e mĂ©thode tracker et consistera en un suivi individuel des grains sĂ©dimentaires. La seconde mĂ©thode, dite mĂ©thode particulaire, portera sur des Ă©chelles plus larges et le transport d’une concentration locale en grains sĂ©dimentaires. Enfin, la troisiĂšme mĂ©thode, que l’on appellera mĂ©thode des moments, s’intĂ©ressera aux Ă©chelles les plus larges en transportant un nuage de particules sĂ©dimentaires dans son ensemble grĂące Ă  une seule particule numĂ©rique caractĂ©risĂ©e par les moments de sa distribution en concentration interne. Ceci permettra de caractĂ©riser le transport sĂ©dimentaire de maniĂšre locale qui se produit lors du passage d’un mascaret. Deux mascarets ondulĂ©s de nombre de Froude proches seront Ă©tudiĂ©s. Il sera notamment montrĂ© que le nombre de Froude n’est pas un critĂšre permettant de caractĂ©riser le transport sĂ©dimentaire induit par les mascarets

    Vision naïve du transport sédimentaire induit par un mascaret ondulant

    Get PDF
    Dans une collaboration entre l'institut Pprime et le laboratoire TREFLE-ENSCB, le transport sĂ©dimentaire produit par un mascaret ondulant est Ă©tudiĂ© grĂące Ă  une approche lagrangienne basĂ©e sur la mĂ©thode particulaire [2] et la mĂ©thode des moments [4]. Un mascaret ondulant peut ĂȘtre assimilĂ© Ă  une dĂ©formation de la surface libre de l'eau, induite par la superposition de l'Ă©lĂ©vation du niveau d'eau gĂ©nĂ©rĂ©e par la marĂ©e et d'une sĂ©rie d'Ă©teules. Le premier mĂ©canisme peut ĂȘtre comparĂ© Ă  la rupture d'un barrage sur un sol mouillĂ©. Le second mĂ©canisme peut ĂȘtre identifiĂ© Ă  un train de solitons de vitesses de propagation identiques mais d'amplitudes diffĂ©rentes. Ces deux phĂ©nomĂšnes hydrauliques sont modĂ©lisables par le code ThĂ©tis [3]. A partir des Ă©coulements numĂ©riques fournis par ThĂ©tis, le transport de particules en suspension sous l'effet d'une rupture de barrage et d'un soliton est simulĂ© Ă  l'aide de la mĂ©thode particulaire. La distribution spatiale du nuage de particules est caractĂ©risĂ©e par la mĂ©thode des moments permettant de suivre l'Ă©volution de la dĂ©formation de ce nuage de particules : Ă©longation, contraction et rotation du panache de particules en suspension. Les simulations numĂ©riques rĂ©alisĂ©es nous permettent de dissocier la contribution de l'Ă©lĂ©vation du niveau d'eau de celle des Ă©teules dans le transport sĂ©dimentaire. Nous souhaitons Ă©tendre ces rĂ©sultats au cas d'un mascaret ondulant. [1] ANR Project “Mascaret” (ANR-2010-BLAN-0911). http://mascaret.enscbp.fr/ [2] A. Beaudoin, S. Huberson, E. Rivoalen, 2003. Simulation of anisotropic diïŹ€usion by means of a diïŹ€usion velocity method. Journal of Computational Physics, 186, 122–135. [3] Lubin P., Vincent S., Abadie S. and Caltagirone J.-P., 2006. Three-dimensional Large Eddy Simulation of air entrainment under plunging breaking waves. Coastal Engineering, 53, 631-655. [4] A. Beaudoin, S. Huberson, E. Rivoalen, 2002, MĂ©thode particulaire anisotrope, C.R. Mecanique 330, 51-56

    InĂ©galitĂ©s de santĂ© liĂ©es Ă  l’immigration et capital social : une analyse en dĂ©composition

    Get PDF
    Cet article Ă©tudie la contribution du capital social Ă  l’explication des diffĂ©rences d’état de santĂ© entre la population immigrĂ©e et la population native en France Ă  partir des donnĂ©es de l’EnquĂȘte santĂ© protection sociale (ESPS) menĂ©e en 2006 et 2008. L’utilisation de la mĂ©thode de dĂ©composition proposĂ©e par Fairlie montre que 38,7 % des diffĂ©rences d’état de santĂ© entre les deux populations sont liĂ©es Ă  une diffĂ©rence de distribution des caractĂ©ristiques observables. Alors que l’ñge contribue nĂ©gativement aux disparitĂ©s de santĂ©, les rĂ©sultats indiquent que le capital social prĂ©sente la contribution la plus importante (53,9 %) devant le revenu (42,5 %) et la Profession et catĂ©gorie socioprofessionnelle (PCS) (16 %).This article explores the contribution of social capital to health disparities between French born and migrant populations, based on the 2006 and 2008 French Health, Health Care and Insurance Survey. The use of Fairlie’s decomposition method shows that 38,7% of health disparities between both populations is due to differences in the distribution of observable characteristics. Although age has a negative contribution on health disparities, findings indicate that social capital has the main contribution (53,9%) alongside income (42,5%) and occupation status (16%)

    InĂ©galitĂ©s de santĂ© liĂ©es Ă  l’immigration et capital social : une analyse en dĂ©composition

    Get PDF
    Cet article Ă©tudie la contribution du capital social Ă  l’explication des diffĂ©rences d’état de santĂ© entre la population immigrĂ©e et la population native en France Ă  partir des donnĂ©es de l’EnquĂȘte santĂ© protection sociale (ESPS) menĂ©e en 2006 et 2008. L’utilisation de la mĂ©thode de dĂ©composition proposĂ©e par Fairlie montre que 38,7 % des diffĂ©rences d’état de santĂ© entre les deux populations sont liĂ©es Ă  une diffĂ©rence de distribution des caractĂ©ristiques observables. Alors que l’ñge contribue nĂ©gativement aux disparitĂ©s de santĂ©, les rĂ©sultats indiquent que le capital social prĂ©sente la contribution la plus importante (53,9 %) devant le revenu (42,5 %) et la Profession et catĂ©gorie socioprofessionnelle (PCS) (16 %).This article explores the contribution of social capital to health disparities between French born and migrant populations, based on the 2006 and 2008 French Health, Health Care and Insurance Survey. The use of Fairlie’s decomposition method shows that 38,7% of health disparities between both populations is due to differences in the distribution of observable characteristics. Although age has a negative contribution on health disparities, findings indicate that social capital has the main contribution (53,9%) alongside income (42,5%) and occupation status (16%)

    Divergence-free condition in transport simulation

    Get PDF
    AbstractIn this work, two adaptations of the particle method allowing one to reduce the numerical errors induced by the non-zero divergence of flow fields in the numerical simulations of particle transport are presented. The first adaptation is based on the renormalization method allowing one to use an irregular distribution of particles induced by the non-zero divergence of flow fields. The second adaptation consists in applying a correction on the weight of the particles by using the relation between the divergence of flow fields and the particles' volume evolution. This adaptation may be considered as a relaxation method. The accuracy of both methods is evaluated by simulating the transport of an inert tracer by the flow of a jet in crossflow whose concentration fields were measured experimentally. The comparison between the numerical and experimental results shows clearly that the two adaptations of the particle method correct efficiently the effect of a non-zero divergence velocity field on the computed concentration

    Vision naïve du transport sédimentaire induit par un mascaret ondulant

    Get PDF
    Dans une collaboration entre l'institut Pprime et le laboratoire TREFLE-ENSCB, le transport sĂ©dimentaire produit par un mascaret ondulant est Ă©tudiĂ© grĂące Ă  une approche lagrangienne basĂ©e sur la mĂ©thode particulaire [2] et la mĂ©thode des moments [4]. Un mascaret ondulant peut ĂȘtre assimilĂ© Ă  une dĂ©formation de la surface libre de l'eau, induite par la superposition de l'Ă©lĂ©vation du niveau d'eau gĂ©nĂ©rĂ©e par la marĂ©e et d'une sĂ©rie d'Ă©teules. Le premier mĂ©canisme peut ĂȘtre comparĂ© Ă  la rupture d'un barrage sur un sol mouillĂ©. Le second mĂ©canisme peut ĂȘtre identifiĂ© Ă  un train de solitons de vitesses de propagation identiques mais d'amplitudes diffĂ©rentes. Ces deux phĂ©nomĂšnes hydrauliques sont modĂ©lisables par le code ThĂ©tis [3]. A partir des Ă©coulements numĂ©riques fournis par ThĂ©tis, le transport de particules en suspension sous l'effet d'une rupture de barrage et d'un soliton est simulĂ© Ă  l'aide de la mĂ©thode particulaire. La distribution spatiale du nuage de particules est caractĂ©risĂ©e par la mĂ©thode des moments permettant de suivre l'Ă©volution de la dĂ©formation de ce nuage de particules : Ă©longation, contraction et rotation du panache de particules en suspension. Les simulations numĂ©riques rĂ©alisĂ©es nous permettent de dissocier la contribution de l'Ă©lĂ©vation du niveau d'eau de celle des Ă©teules dans le transport sĂ©dimentaire. Nous souhaitons Ă©tendre ces rĂ©sultats au cas d'un mascaret ondulant. [1] ANR Project “Mascaret” (ANR-2010-BLAN-0911). http://mascaret.enscbp.fr/ [2] A. Beaudoin, S. Huberson, E. Rivoalen, 2003. Simulation of anisotropic diïŹ€usion by means of a diïŹ€usion velocity method. Journal of Computational Physics, 186, 122–135. [3] Lubin P., Vincent S., Abadie S. and Caltagirone J.-P., 2006. Three-dimensional Large Eddy Simulation of air entrainment under plunging breaking waves. Coastal Engineering, 53, 631-655. [4] A. Beaudoin, S. Huberson, E. Rivoalen, 2002, MĂ©thode particulaire anisotrope, C.R. Mecanique 330, 51-56
    • 

    corecore