25 research outputs found

    The Pictet-Spengler reaction updates its habits

    Get PDF
    The Pictet-Spengler reaction (P-S) is one of the most direct, efficient, and variable synthetic method for the construction of privileged pharmacophores such as tetrahydroisoquinolines (THIQs), tetrahydro-β-carbolines (THBCs), and polyheterocyclic frameworks. In the lustro (five-year period) following its centenary birthday, the P-S reaction did not exit the stage but it came up again on limelight with new features. This review focuses on the interesting results achieved in this period (2011–2015), analyzing the versatility of this reaction. Classic P-S was reported in the total synthesis of complex alkaloids, in combination with chiral catalysts as well as for the generation of libraries of compounds in medicinal chemistry. The P-S has been used also in tandem reactions, with the sequences including ring closing metathesis, isomerization, Michael addition, and Gold- or Brønsted acid-catalyzed N-acyliminium cyclization. Moreover, the combination of P-S reaction with Ugi multicomponent reaction has been exploited for the construction of highly complex polycyclic architectures in few steps and high yields. The P-S reaction has also been successfully employed in solid-phase synthesis, affording products with different structures, including peptidomimetics, synthetic heterocycles, and natural compounds. Finally, the enzymatic version of P-S has been reported for biosynthesis, biotransformations, and bioconjugations

    Polymeric glabrescione B nanocapsules for passive targeting of Hedgehog-dependent tumor therapy in vitro

    Get PDF
    Aim: With the purpose of delivering high doses of glabrescione B (GlaB) to solid tumors after systemic administration, long-circulating GlaB-loaded oil-cored polymeric nanocapsules (NC-GlaB) were formulated. Materials & methods: Synthesis of GlaB and its encapsulation in nanocapsules (NCs) was performed. Empty and GlaB- loaded NCs were assessed for their physico-chemical properties, in vitro cytotoxicity and in vivo biodistribution. Results: GlaB was ef ciently loaded into NCs (~90%), which were small (~160 nm), homogeneous and stable upon storage. Further, GlaB and NC-GlaB demonstrated speci c activities against the cancer stem cells. Preliminary studies in tumor-bearing mice supported the ability of NC to accumulate in pancreatic tumors. Conclusion: This study provides early evidence that NC-GlaB has the potential to be utilized in a preclinical setting and justi es the need to perform therapeutic experiments in mice

    Caracterización de columnas reactivas rellenas con ZVI y diseño de prototipos para la eliminación de arsénico en agua

    Get PDF
    Se realizaron estudios de pequeña y mediana escala con columnas reactivas rellenas con hierro cero valente (ZVI) empleadas para la remoción continua de arsénico del agua de consumo. Los ensayos de corta duración en pequeña escala se utilizaron para estudiar el efecto de las variables operativas sobre la producción de Fe, consumo de oxígeno y protones. Los ensayos de en mediana escala permitieron observar la variación temporal de los parámetros hidráulicos de la columna reactiva. Los resultados obtenidos de ambos tipos de experimentos permiten optimizar el tiempo de operación y las condiciones operativas de un prototipo basado en esta técnica

    Caracterización de columnas reactivas rellenas con ZVI y diseño de prototipos para la eliminación de arsénico en agua

    Get PDF
    Se realizaron estudios de pequeña y mediana escala con columnas reactivas rellenas con hierro cero valente (ZVI) empleadas para la remoción continua de arsénico del agua de consumo. Los ensayos de corta duración en pequeña escala se utilizaron para estudiar el efecto de las variables operativas sobre la producción de Fe, consumo de oxígeno y protones. Los ensayos de en mediana escala permitieron observar la variación temporal de los parámetros hidráulicos de la columna reactiva. Los resultados obtenidos de ambos tipos de experimentos permiten optimizar el tiempo de operación y las condiciones operativas de un prototipo basado en esta técnica

    In cellulo Evaluation of Phototransformation Quantum Yields in Fluorescent Proteins Used As Markers for Single-Molecule Localization Microscopy

    Get PDF
    International audienceSingle-molecule localization microscopy of biological samples requires a precise knowledge of the employed fluorescent labels. Photoactivation, photoblinking and photobleaching of phototransformable fluorescent proteins influence the data acquisition and data processing strategies to be used in (Fluorescence) Photoactivation Localization Microscopy ((F)-PALM), notably for reliable molecular counting. As these parameters might depend on the local environment, they should be measured in cellulo in biologically relevant experimental conditions. Here, we measured phototransformation quantum yields for Dendra2 fused to actin in fixed mammalian cells in typical (F)-PALM experiments. To this aim, we developed a data processing strategy based on the clustering optimization procedure proposed by Lee et al (PNAS 109, 17436–17441, 2012). Using simulations, we estimated the range of experimental parameters (molecular density, molecular orientation, background level, laser power, frametime) adequate for an accurate determination of the phototransformation yields. Under illumination at 561 nm in PBS buffer at pH 7.4, the photobleaching yield of Dendra2 fused to actin was measured to be (2.560.4)610 25 , whereas the blinking-off yield and thermally-activated blinking-on rate were measured to be (2.360.2)610 25 and 11.760.5 s 21 , respectively. These phototransformation yields differed from those measured in poly-vinyl alcohol (PVA) and were strongly affected by addition of the antifading agent 1,4-diazabicyclo[2.2.2]octane (DABCO). In the presence of DABCO, the photobleaching yield was reduced 2-fold, the blinking-off yield was decreased more than 3-fold, and the blinking-on rate was increased 2-fold. Therefore, DABCO largely improved Dendra2 photostability in fixed mammalian cells. These findings are consistent with redox-based bleaching and blinking mechanisms under (F)-PALM experimental conditions. Finally, the green-to-red photoconversion quantum yield of Dendra2 was estimated to be (1.460.6)610 25 in cellulo under 405 nm illumination. Citation: Avilov S, Berardozzi R, Gunewardene MS, Adam V, Hess ST, et al. (2014) In cellulo Evaluation of Phototransformation Quantum Yields in Fluorescent Proteins Used As Markers for Single-Molecule Localization Microscopy. PLoS ONE 9(6): e98362

    Investigation of zero-valent iron (ZVI)/H2O continuous processes using multivariate analysis and artificial neural networks

    No full text
    Multivariate statistical techniques and artificial neural networks (ANNs) were used for the analysis, interpretation, and modeling of the results obtained in the study of zero-valent iron (ZVI) reactive beds designed for contaminant removal. A wide range of operating conditions was evaluated through more than 120 rapid small-scale column tests (RSSCT). The production of Fe(II) and Fe(III) species, dissolved oxygen consumption, and pH variation along the reactive bed were used as response variables for evaluating the process performance. Due to the complexity of the system, and the difficulty in defining and fitting kinetic parameters, ANN models were used to simulate the system without the need for kinetic expressions. Therefore the latter were used for assessing the system behavior within the investigated experimental domain and for evaluating the relative importance of the operating factors. In addition, the application of the multivariate techniques cluster analysis (CA) and principal component analysis (PCA) revealed underlying relationships among the response variables. Moreover, although multiple physicochemical processes are involved, the results obtained through PCA indicate that the main trends can be rationalized by considering a few key reactions only. The strategy of analyzing RSSCT results with different numerical techniques provides valuable knowledge for designing real-scale ZVI-based treatments aimed at the efficient elimination of a wide range of contaminants in the aqueous phase.Fil: Berardozzi, Eliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Donadelli, Jorge Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Teixeira, Antonio C. S. C.. Universidade de Sao Paulo; BrasilFil: Guardani, Roberto. Universidade de Sao Paulo; BrasilFil: Garcia Einschlag, Fernando Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentin

    Occurrence of Enantioselectivity in Nature: The Case of (S)-Norcoclaurine

    No full text
    This review article is aimed at providing a monographic overview on (S)-norcoclaurine (NC) alkaloid from three diverse points of view, collected all together for the first time: 1) the synthetic one, where the compound is seen as a target chiral molecule to be obtained in the highest optical purity and as a starting point for the development of biocatalytic asymmetric syntheses of tetrahydroisoquinoline alkaloids; 2) the chromatographic one, which addresses the HPLC separation of the two NC enantiomers; and 3) the biochemical one, for which a thorough understanding of the topology and mechanism of action of norcoclaurine synthase (NCS) enzyme is still a matter of debate. Special emphasis on the most recent studies in the field is given by discussing the results published by the main research groups who are working on NC and NCS

    Synthesis, biological evaluation and molecular modeling studies on novel quinonoid inhibitors of CDC25 phosphatases

    No full text
    The cell division cycle 25 phosphatases (CDC25A, B, and C; E.C. 3.1.3.48) are key regulator of the cell cycle in human cells. Their aberrant expression has been associated with the insurgence and development of various types of cancer, and with a poor clinical prognosis. Therefore, CDC25 phosphatases are a valuable target for the development of small molecule inhibitors of therapeutic relevance. Here, we used an integrated strategy mixing organic chemistry with biological investigation and molecular modeling to study novel quinonoid derivatives as CDC25 inhibitors. The most promising molecules proved to inhibit CDC25 isoforms at single digit micromolar concentration, becoming valuable tools in chemical biology investigations and profitable leads for further optimization
    corecore