196 research outputs found

    APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Aβ42

    Get PDF
    Identifying high risk populations is an important component of disease prevention strategies. One approach is examining neuroimaging parameters that differ in Alzheimer’s disease (AD), including functional connections known to be disrupted within the “default mode network” (DMN). We have previously shown these same disruptions in cognitively normal elderly, who have amyloid-beta (Aβ) plaques detected using PIB PET imaging, suggesting neuronal toxicity of plaques. Here we sought to determine if pathological effects of apolipoprotein E ε4 (APOE4) genotype could be seen independent of Aβ plaque toxicity by examining resting state fMRI functional connectivity (fcMRI ) in participants without preclinical fibrillar amyloid deposition (PIB−). Cognitively normal participants enrolled in longitudinal studies (n = 100, mean age = 62) who were PIB− were categorized into those with and without an APOE 4 allele and studied using fcMRI. APOE 4 allele carriers (E4+) differed significantly from E4− in functional connectivity of the precuneus to several regions previously defined as having abnormal connectivity in a group of AD participants. These effects were observed prior to any manifestations of cognitive changes and in the absence of brain fibrillar amyloid-beta (Aβ) plaque deposition, suggesting that early manifestations of a genetic effect can be detected using fcMRI and that these changes may antedate the pathological effects of fibrillar amyloid plaque toxicity

    Perceptions of employability among London's low-paid: 'self-determination' or ethnicity?

    Get PDF
    We investigate how ethnicity, gender and other characteristics affect low-paid workers’ perceptions of their employability in London’s labour market, examining ‘self-determination’, ethnic and dual labour market theories. We find that perceptions vary considerably, both between genders and ethnicities and in the extent to which they are ‘justified’ by human capital attributes. Optimism varies between genders and ethnic groups but individuals’ perceptions vary to an even greater extent within genders and ethnic groups. Hence, individual-level ‘self-determination’ explanations of these perceptions appear to have greatest explanatory power though ethnic theories also have utility

    T1 and FLAIR signal intensities are related to tau pathology in dominantly inherited Alzheimer disease

    Get PDF
    Carriers of mutations responsible for dominantly inherited Alzheimer disease provide a unique opportunity to study potential imaging biomarkers. Biomarkers based on routinely acquired clinical MR images, could supplement the extant invasive or logistically challenging) biomarker studies. We used 1104 longitudinal MR, 324 amyloid beta, and 87 tau positron emission tomography imaging sessions from 525 participants enrolled in the Dominantly Inherited Alzheimer Network Observational Study to extract novel imaging metrics representing the mean (μ) and standard deviation (σ) of standardized image intensities of T1-weighted and Fluid attenuated inversion recovery (FLAIR) MR scans. There was an exponential decrease in FLAIR-μ in mutation carriers and an increase in FLAIR and T1 signal heterogeneity (T1-σ and FLAIR-σ) as participants approached the symptom onset in both supramarginal, the right postcentral and right superior temporal gyri as well as both caudate nuclei, putamina, thalami, and amygdalae. After controlling for the effect of regional atrophy, FLAIR-μ decreased and T1-σ and FLAIR-σ increased with increasing amyloid beta and tau deposition in numerous cortical regions. In symptomatic mutation carriers and independent of the effect of regional atrophy, tau pathology demonstrated a stronger relationship with image intensity metrics, compared with amyloid pathology. We propose novel MR imaging intensity-based metrics using standard clinical T1 and FLAIR images which strongly associates with the progression of pathology in dominantly inherited Alzheimer disease. We suggest that tau pathology may be a key driver of the observed changes in this cohort of patients

    First presentation with neuropsychiatric symptoms in autosomal dominant Alzheimer\u27s disease: The Dominantly Inherited Alzheimer\u27s Network Study

    Get PDF
    Behavioural changes and neuropsychiatric symptoms (NPS) commonly occur in Alzheimer’s disease (AD) but may not be recognised as AD-related when they are the presenting feature. NPS are important as they are associated with greater functional impairment, poorer quality of life, accelerated cognitive decline and worsened caregiver burden.1 Autosomal dominant AD (ADAD), although \u3c 1% of total AD cases, provides a valuable opportunity to study the clinical heterogeneity of AD. The young age at onset reduces the prevalence of age-related comorbid pathologies and the near 100% penetrance of pathogenic mutations reduces the likelihood of misdiagnosis.2 Anxiety and depression commonly occur in ADAD family members, with increased levels of depression having been found among predementia female mutation carriers.3 Subsequent studies, however, have shown that anxiety and/or depression are common regardless of mutation status, occurring in almost one in three at-risk individuals, with one study reporting a higher rate of depression in non-carriers (17%) than asymptomatic carriers (5%).4 5 Despite the high frequency of NPS in ADAD families, relatively little is known about the proportion of ADAD cases who present with predominantly behavioural symptoms. Our aims were to assess the first reported clinical change in symptomatic ADAD, to compare presentations across genotypes, and to compare cognitive performance between behavioural and cognitive-led presentations

    Segregation of functional networks is associated with cognitive resilience in Alzheimer's disease

    Get PDF
    Cognitive resilience is an important modulating factor of cognitive decline in Alzheimer's disease, but the functional brain mechanisms that support cognitive resilience remain elusive. Given previous findings in normal aging, we tested the hypothesis that higher segregation of the brain's connectome into distinct functional networks represents a functional mechanism underlying cognitive resilience in Alzheimer's disease. Using resting-state functional MRI, we assessed both resting-state-fMRI global system segregation, i.e. the balance of between-network to within-network connectivity, and the alternate index of modularity Q as predictors of cognitive resilience. We performed all analyses in two independent samples for validation: First, we included 108 individuals with autosomal dominantly inherited Alzheimer's disease and 71 non-carrier controls. Second, we included 156 amyloid-PET positive subjects across the spectrum of sporadic Alzheimer's disease as well as 184 amyloid-negative controls. In the autosomal dominant Alzheimer's disease sample, disease severity was assessed by estimated years from symptom onset. In the sporadic Alzheimer's sample, disease stage was assessed by temporal-lobe tau-PET (i.e. composite across Braak stage I & III regions). In both samples, we tested whether the effect of disease severity on cognition was attenuated at higher levels of functional network segregation. For autosomal dominant Alzheimer's disease, we found higher fMRI-assessed system segregation to be associated with an attenuated effect of estimated years from symptom onset on global cognition (p = 0.007). Similarly, for sporadic Alzheimer's disease patients, higher fMRI-assessed system segregation was associated with less decrement in global cognition (p = 0.001) and episodic memory (p = 0.004) per unit increase of temporal lobe tau-PET. Confirmatory analyses using the alternate index of modularity Q revealed consistent results. In conclusion, higher segregation of functional connections into distinct large-scale networks supports cognitive resilience in Alzheimer's disease

    Cerebrospinal fluid proteomics define the natural history of autosomal dominant Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) pathology develops many years before the onset of cognitive symptoms. Two pathological processes—aggregation of the amyloid- (A ) peptide into plaques and the microtubule protein tau into neurofibrillary tangles (NFTs)—are hallmarks of the disease. However, other pathological brain processes are thought to be key disease mediators of A plaque and NFT pathology. How these additional pathologies evolve over the course of the disease is currently unknown. Here we show that proteomic measurements in autosomal dominant AD cerebrospinal fluid (CSF) linked to brain protein coexpression can be used to characterize the evolution of AD pathology over a timescale spanning six decades. SMOC1 and SPON1 proteins associated with A plaques were elevated in AD CSF nearly 30 years before the onset of symptoms, followed by changes in synaptic proteins, metabolic proteins, axonal proteins, inflammatory proteins and finally decreases in neurosecretory proteins. The proteome discriminated mutation carriers from noncarriers before symptom onset as well or better than A and tau measures. Our results highlight the multifaceted landscape of AD pathophysiology and its temporal evolution. Such knowledge will be critical for developing precision therapeutic interventions and biomarkers for AD beyond those associated with A and tau

    Longitudinal Accumulation of Cerebral Microhemorrhages in Dominantly Inherited Alzheimer Disease

    Get PDF
    Objective: To investigate the inherent clinical risks associated with the presence of cerebral microhemorrhages (CMHs) or cerebral microbleeds (CMBs) and characterize individuals at high risk for developing hemorrhagic amyloid-related imaging abnormality (ARIA-H), we evaluated longitudinally families affected by dominantly inherited Alzheimer disease (DIAD). Methods: Mutation carriers (n=310) and non-carriers (n=201) underwent neuroimaging, including gradient echo MR sequences to detect CMHs, neuropsychological, and clinical assessments. Cross-sectional and longitudinal analyses evaluated relationships between CMHs and neuroimaging and clinical marker of disease. Results: Three percent of non-carriers and eight percent of carriers developed CMHs primarily located in lobar areas. Carriers with CMHs were older, had higher diastolic blood pressure and Hachinski ischemic scores, and more clinical, cognitive, and motor impairments than those without CMH. APOE-ε4 status was not associated with the prevalence or incidence of CMHs. Prevalent or incident CMHs predicted faster change in clinical dementia rating although not composite cognitive measure, cortical thickness, hippocampal volume, or white matter lesions. Critically, the presence of two or more CMHs was associated with a significant risk for development of additional CMHs over time (8.95±10.04 per year). Conclusion: Our study highlights factors associated with the development of CMHs in individuals with DIAD. CMHs are a part of the underlying disease process in DIAD and are significantly associated with dementia. This highlights that in participants in treatment trials exposed to drugs, which carry the risk of ARIA-H as a complication, it may be challenging to separate natural incidence of CMHs from drug related CMHs

    Location of pathogenic variants in PSEN1 impacts progression of cognitive, clinical, and neurodegenerative measures in autosomal-dominant Alzheimer's disease

    Get PDF
    Although pathogenic variants in PSEN1 leading to autosomal-dominant Alzheimer disease (ADAD) are highly penetrant, substantial interindividual variability in the rates of cognitive decline and biomarker change are observed in ADAD. We hypothesized that this interindividual variability may be associated with the location of the pathogenic variant within PSEN1. PSEN1 pathogenic variant carriers participating in the Dominantly Inherited Alzheimer Network (DIAN) observational study were grouped based on whether the underlying variant affects a transmembrane (TM) or cytoplasmic (CY) protein domain within PSEN1. CY and TM carriers and variant non-carriers (NC) who completed clinical evaluation, multimodal neuroimaging, and lumbar puncture for collection of cerebrospinal fluid (CSF) as part of their participation in DIAN were included in this study. Linear mixed effects models were used to determine differences in clinical, cognitive, and biomarker measures between the NC, TM, and CY groups. While both the CY and TM groups were found to have similarly elevated A beta compared to NC, TM carriers had greater cognitive impairment, smaller hippocampal volume, and elevated phosphorylated tau levels across the spectrum of pre-symptomatic and symptomatic phases of disease as compared to CY, using both cross-sectional and longitudinal data. As distinct portions of PSEN1 are differentially involved in APP processing by gamma-secretase and the generation of toxic beta-amyloid species, these results have important implications for understanding the pathobiology of ADAD and accounting for a substantial portion of the interindividual heterogeneity in ongoing ADAD clinical trials
    corecore