
Washington University School of Medicine
Digital Commons@Becker

Open Access Publications

2011

APOE4 allele disrupts resting state f MRI
connectivity in the absence of amyloid plaques or
decreased CSF Aβ42
Yvette I. Sheline
Washington University School of Medicine in St. Louis

John C. Morris
Washington University School of Medicine in St. Louis

Abraham Z. Synder
Washington University School of Medicine in St. Louis

Joseph L. Price
Washington University School of Medicine in St. Louis

Zhizi Yan
Washington University School of Medicine in St. Louis

See next page for additional authors

Follow this and additional works at: http://digitalcommons.wustl.edu/open_access_pubs

Part of the Medicine and Health Sciences Commons

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open
Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.

Recommended Citation
Sheline, Yvette I.; Morris, John C.; Synder, Abraham Z.; Price, Joseph L.; Yan, Zhizi; D'Angelo, Gina; Liu, Collin; Dixit, Sachin;
Benzinger, Tammie; Fagan, Anne; Goate, Alison; and Mintun, Mark A., ,"APOE4 allele disrupts resting state fMRI connectivity in the
absence of amyloid plaques or decreased CSF Aβ42." The Journal of Neuroscience.30,50. 17035-17040. (2011).
http://digitalcommons.wustl.edu/open_access_pubs/223

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons@Becker

https://core.ac.uk/display/70382976?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.wustl.edu?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:engeszer@wustl.edu


Authors
Yvette I. Sheline, John C. Morris, Abraham Z. Synder, Joseph L. Price, Zhizi Yan, Gina D'Angelo, Collin Liu,
Sachin Dixit, Tammie Benzinger, Anne Fagan, Alison Goate, and Mark A. Mintun

This open access publication is available at Digital Commons@Becker: http://digitalcommons.wustl.edu/open_access_pubs/223

http://digitalcommons.wustl.edu/open_access_pubs/223?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages


Neurobiology of Disease

APOE4 Allele Disrupts Resting State fMRI Connectivity in
the Absence of Amyloid Plaques or Decreased CSF A�42

Yvette I. Sheline,1,2,3,6 John C. Morris,3,6 Abraham Z. Snyder,2 Joseph L. Price,4 Zhizi Yan,2 Gina D’Angelo,5,6 Collin Liu,2

Sachin Dixit,2 Tammie Benzinger,2 Anne Fagan,3,6 Alison Goate,1,3,6 and Mark A. Mintun1,2,6

Departments of 1Psychiatry, 2Radiology, 3Neurology, 4Anatomy and Neurobiology, and 5Biostatistics, and 6The Knight Alzheimer’s Disease Research
Center, Washington University School of Medicine, St. Louis, Missouri 63110

Identifying high-risk populations is an important component of disease prevention strategies. One approach for identifying at-risk
populations for Alzheimer’s disease (AD) is examining neuroimaging parameters that differ between patients, including functional
connections known to be disrupted within the default-mode network. We have previously shown these same disruptions in cognitively
normal elderly who have amyloid-� (A�) plaques [detected using Pittsburgh Compound B (PIB) PET imaging], suggesting neuronal
toxicity of plaques. Here we sought to determine if pathological effects of apolipoprotein E �4 (APOE4) genotype could be seen indepen-
dent of A� plaque toxicity by examining resting state fMRI functional connectivity (fcMRI) in participants without preclinical fibrillar
amyloid deposition (PIB�). Cognitively normal participants enrolled in longitudinal studies (n � 100, mean age � 62) who were PIB�
were categorized into those with and without an APOE4 allele and studied using fcMRI. APOE4 allele carriers (E4�) differed significantly
from E4� in functional connectivity of the precuneus to several regions previously defined as having abnormal connectivity in a group
of AD participants. These effects were observed before any manifestations of cognitive changes and in the absence of brain fibrillar A�
plaque deposition, suggesting that early manifestations of a genetic effect can be detected using fcMRI and that these changes may
antedate the pathological effects of fibrillar amyloid plaque toxicity.

Introduction
Successfully identifying disease imaging biomarkers may con-
tribute to understanding disease pathogenesis and establish
thresholds for measuring disease progression and response to
therapies. Using imaging parameters to identify how early inter-
vention needs to occur to prevent neuronal injury in the patho-
logical progression to Alzheimer’s disease (AD) is an important
component of disease prevention strategies. Imaging tracers such
as Pittsburgh Compound B (PIB), which bind to fibrillar deposits
of amyloid-� (A�), allow in vivo detection of this pathologic
hallmark of AD, although amorphous diffuse A� plaques may
not be detected by PIB (Cairns et al., 2009). Brain areas, including
the precuneus, constitute a network with correlated spontaneous

brain activity at rest, the default-mode network (DMN), which is
more active at rest and less active during tasks (Raichle et al.,
2001). DMN regions are among the regions earliest affected by
amyloid deposition in AD (Mintun et al., 2006).

Previous work has shown that, compared with brain activity
in cognitively normal individuals (Greicius and Menon, 2004),
brain activity in AD is associated with DMN resting-state fMRI
functional connectivity (fcMRI) disruptions. Because �25% of
older cognitively normal individuals have fibrillar A� deposition
by PIB PET (PIB�) (Mintun et al., 2006), similar to postmortem
work (Price and Morris, 1999), we recently investigated the effect
of A� on DMN resting-state connectivity. We found that, in
cognitively normal elderly, the presence of fibrillar amyloid
(PIB�) was associated with regional disruptions in fcMRI of the
same DMN regions as in AD, including precuneus, hippocam-
pus, parahippocampus, anterior cingulate cortex, and visual cor-
tex (Sheline et al., 2010). Disruption in resting-state connectivity
in subjects with A� plaque deposition has also been identified by
other investigators (Hedden et al., 2009).

In addition to an amyloid toxicity effect in producing neuro-
nal damage, a number of studies have demonstrated the impor-
tance of the �4 allele of apolipoprotein E (APOE4) in the risk of
developing AD. Age and genetic background are the strongest
known risk factors for AD (Blennow et al., 2006). The APOE4
allele, the major genetic susceptibility factor for late-onset AD,
present in �15% of the population (Strittmatter and Roses,
1996), confers dramatically increased risk in a gene dose-
dependent manner for the development of AD with an earlier age
of onset (Corder et al., 1993). Other isoforms of APOE are con-
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sidered to be neutral (APOE3) or protective (APOE2) for AD risk
(Corder et al., 1994). In a small set of young healthy APOE4�
carriers, compared with matched noncarriers, Filippini et al.
(2009) found increased coactivation in retrosplenial, medial tem-
poral, and medial prefrontal cortex by independent component
analysis in resting-state fMRI. Using resting-state data, Fleisher et
al. (2009) found that another small sample of APOE4� carriers
aged 50 – 65 years had increased default-mode network connec-
tivity compared with noncarriers. However, it was not known
whether these participants had fibrillar amyloid plaques in addi-
tion to the APOE4 genotype. In the current study, we investigated
the role of APOE4 genotype on DMN connectivity in subjects
who were shown by PIB PET to be negative for fibrillar amyloid
plaques, to determine the effect of genotype on resting state con-
nectivity, independent of amyloid plaque effects.

Materials and Methods
Participants were community-living volunteers enrolled in longitudinal
studies of memory and aging at the Knight Alzheimer’s Disease Research
Center at Washington University. Individuals had no cognitive impair-
ment as assessed by the Clinical Dementia Rating (CDR) (Morris, 1993)
scale. These cognitively normal participants (all CDR � 0) also partici-
pated in PIB PET imaging to identify subjects (n � 100) with minimal
A� deposition (PIB�), defined as mean cortical binding potential
(MCBP) � 0.18 (Mintun et al., 2006; Sheline et al., 2010) (mean
MCBP � 0.02 in the current sample) (see Results for more details on
demographics). Detailed information on PIB PET imaging and analysis
has been reported previously (Mintun et al., 2006). Briefly, a 60 min
dynamic PET scan was obtained after injection of �12 mCi of [ 11C]PIB.
Time activity curves derived from specific MRI regions of interest (ROI)
were used to calculate the MCBP (Mintun et al., 2006).
Genotyping. DNA was extracted from peripheral blood samples using
standard procedures. APOE genotyping was performed as previously
described (Morris et al., 2010). Because the number of subjects with the
APOE2 allele was small, they were combined as part of the APOE4� if the
genotype was 2/2 or 2/3. If the genotype was 2/4 they were counted as
APOE4�.

CDR 0 cognitively normal participants who were PIB�, defined as
MCBP � 0.18 (Mintun et al., 2006; Sheline et al., 2010) (mean � 0.02;
SD � 0.06) were categorized into two groups based on the presence or
absence of the APOE4 allele. If the participant had at least one APOE4
allele they were categorized as APOE4� and if they had no APOE4 allele
they were categorized as APOE4�. We combined the APOE 4/4 genotype
(n � 4) with APOE 3/4 (n � 29) and APOE 2/4 (n � 5) for a total of 38
individuals who were APOE4 carriers (APOE4�). These subjects were
compared with the remaining 62 subjects with APOE 3/3 (n � 50), APOE
2/3 (n � 10), and APOE 2/2 (n � 2) (APOE4�) genotype. Demographic
comparison of APOE4� versus APOE4� individuals is shown in Table
1. All of the connectivity analyses were regressed on APOE4, adjusting for
age, education, gender, and MCBP. The main effect of covariates was not
statistically significant ( p � 0.05).

fMRI scanning methods. These methods have been described previ-
ously (Sheline et al., 2010). Subjects were scanned with their eyes closed
in a 3T Siemens Trio scanner and functional images were collected in

runs using a gradient echo sequence [echo time � 27 ms; repetition time
(TR) � 384 ms; field of view � 256 mm; flip angle � 90°] sensitive to
blood oxygenation level-dependent (BOLD) contrast (T2* weighting).
Thirty-six contiguous, 4.0-mm-thick slices were acquired parallel to the
anterior–posterior commissure plane (4.0 mm approximately isotropic
voxels), providing complete brain coverage. Two fMRI runs included
164 volumes each, continuously acquired at a TR of 2.2 s (�6 min each).
The fMRI data were corrected for head motion, transformed to a com-
mon atlas space, and blurred with a 6 mm full-width half-maximum
Gaussian filter.

Functional connectivity analysis of resting-state activity. We used stan-
dard methods for the functional connectivity analysis (Vincent et al.,
2006; Fox and Raichle, 2007; Fox et al., 2009). BOLD volumetric time
series were concatenated and preprocessed, including temporal filtering,
retaining frequencies up to 0.1 Hz. Spurious variance was reduced by regres-
sion of several nuisance variables, including head motion parameters, and
the signal averaged over the whole brain (Fox et al., 2009). There were no
group differences in quality assurance measures, e.g., head movement.

Creation of a voxel restriction mask based on prior work. This procedure
generated a mask that was used to enhance the likelihood of observing
significant APOE4� versus APOE4� effects in the current study (sup-
plemental materials, available at www.jneurosci.org).

APOE4� versus APOE4� precuneus functional connectivity compari-
son. Individual correlation maps were produced by extracting the BOLD
time course from the bilateral precuneus seed region (�7, �60, 21) used
in previous analysis of AD versus control participants (Sheline et al.,
2010). Correlation maps were computed using the Pearson product-
moment formula and applied to the voxelwise BOLD time course. Indi-
vidual subjects’ correlation maps were Fisher z transformed and entered
into a voxelwise random-effects analysis (two-sided unequal variance) of
the APOE4� versus APOE4� effect. The resulting t map was converted
to equiprobable Z scores, masked by a priori hypothesized ROIs (see
above) to retain voxels most likely to show a group difference, and then
subjected to peak search. Peak search retained voxels with a significance
of p � 0.01, not corrected for multiple comparisons, with a minimum of
10 contiguous voxels, leaving 14 regions of interest. For each participant,
time series were extracted from the identified regions and the precuneus–
ROI correlation coefficients were computed. Statistical significance of
group differences was assessed on the basis of t tests on the precuneus–
ROI correlations (Table 2). In addition, Bonferroni correction for mul-
tiple comparisons on the 14 original regions was conducted, yielding
nine significant ROIs following correction (Table 2).

Results
APOE 4� versus APOE 4� connectivity using a priori regions
defined in AD
The regions of difference are shown in Table 2. Regions (n � 9)
surviving a Bonferroni multiple-comparisons correction (n �
14) are also indicated in Table 2 and shown in Figure 1.

In Figure 1, the hue of the region indicates the sign of the
measured group difference in precuneus correlation (blue,
rAPOE4� � rAPOE4�; red, rAPOE4� � rAPOE4�). Regions with pos-
itive APOE4� versus APOE4� connectivity group differences
included regions with increased positive correlation [medial pre-
frontal cortex (MPFC) and BA10 (frontal pole)] and regions with
anticorrelation in APOE4� that had positive correlation in
APOE4� [caudal orbital cortex and dorsal occipital cortex
(BA19)].

Regions with negative APOE4� versus APOE4� connectivity
group differences included regions of decreased positive correla-
tion (left hippocampus, left parahippocampus, middle temporal
cortex, and BA20), a region with increased anti-correlation [dorsal
anterior cingulate (AC)], and regions with positive correlations in
APOE4� that had negative correlation in APOE4� [right gyrus rec-
tus, right hippocampus, and left superior temporal gyrus/frontopa-
rietal operculum (BA22)]. These differences are also shown
graphically in Figure 2.

Table 1. Demographic comparison of ApoE4� and ApoE4� participants

Total PIB�
(N � 100)

ApoE4�
(N � 62)

ApoE4�
(N � 38)

ApoE4� versus
ApoE4�

t p

Gender (female, male) 72, 28 43, 19 29, 9 0.57* 0.45
Mean age (SD) (years) 61.6 (8.1) 63.3 (7.4) 58.8 (8.5) 2.81 0.01
Mean education (SD) (years) 16.1 (2.4) 16.0 (2.6) 16.2 (2.0) �0.37 0.72
Mean MMSE score (SD) 29.4 (0.8) 29.3 (0.9) 29.6 (0.7) �1.57 0.12

Mean MCBP score (SD) 0.02 (0.06) 0.01 (0.05) 0.03 (0.07) �1.94
0.06

MMSE, Mini Mental State Examination. *�2 test, df � 1.
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In addition, we conducted post hoc analyses limiting the sam-
ple to the 70 of 100 participants with CSF levels of A�42 � 500
pg/ml, the cutoff in our dataset for abnormal CSF A�42 (Morris et
al., 2010) using the Innotest ELISA (Immogenetics). We found
that of the nine Bonferroni multiple-comparison corrected re-
gions identified in Table 2 and Figure 1, five remained significant
in the comparison of ApoE4� versus ApoE4� group connectivity
differences when limited to those participants with CSF levels of
A�42 � 500 pg/ml, another biomarker used to determine preclin-
ical AD. These regions were left hippocampus, left parahip-
pocampus, dorsal anterior cingulate, dorsal occipital cortex, and
middle temporal cortex.

For exploratory APOE 4� versus APOE 4� connectivity in
whole brain analyses, see supplemental materials, available at
www.jneurosci.org.

Discussion
In the current study, participants carrying an APOE4 allele had
clear-cut abnormalities in precuneus resting-state functional
connectivity in the absence of any cognitive impairment, and in
the absence of fibrillar cerebral A� deposits detectable by PET
PIB imaging. This result suggests that genetic influences altered
functional connectivity within the DMN before the onset of clin-
ical disease. We have previously shown an APOE4 dose-

Figure 1. Altered functional connectivity of the precuneus in cognitively normal PIB� APOE4� versus APOE4� participants. a–d, Medial and lateral sagittal sections identifying
statistically significant regional differences in functional connectivity of the precuneus between APOE4� and APOE4� cognitively normal individuals previously determined by PIB PET
studies to be PIB�. L, Left; R, right; Hip, hippocampus; Parahip, parahippocampus; Temp, temporal cortex; GR, gyrus rectus; Sup Temp/F-P O, superior temporal gyrus/frontoparietal
operculum.

Table 2. Regions in ApoE4� versus ApoE4� participants with significantly different connectivity of the bilateral precuneus to a priori regions

Regions (x, y, z) Voxels

p Value

Uncorrected Corrected

Left superior temporal gyrus/fronto-parietal operculum (BA22) �37, �40, �9 21 0.001 0.009*
Right superior temporal gyrus/fronto-parietal operculum (BA22) �51, �3, �8 13 0.006 0.082
Left hippocampus and parahippocampus �17, �34, �12 43 �0.001 0.005*
Dorsal anterior cingulate (BA32) �14, �18, �30 27 �0.001 0.006*
Caudal orbital cortex �13, �24, �16 32 �0.001 0.004*
Pregenual anterior cingulate (BA24)/striatum �02, �24, �02 19 0.013 0.179
Middle temporal cortex (BA20) �58, �12, �22 70 0.002 0.028*
Right parahippocampus �31, �30, �14 17 0.007 0.102
Right hippocampus �19, �19, �6 14 �0.001 0.004*
Medial prefrontal cortex (frontal pole) (BA10) �16, �53, �18 15 0.001 0.020*
Inferior orbital cortex (BA11) �7, �58, �21 13 0.004 0.054
Gyrus rectus (BA11) �4, �23, �21 11 0.001 0.014*
Hypothalamus 0, 0, �9 15 0.012 0.168
Dorsal occipital cortex (BA19) 0, �89, �40 27 0.002 0.029*

Regions were derived from comparisons of a priori areas shown in supplemental Figure 1 (available at www.jneurosci.org as supplemental material) and are shown in Figures 1 and 2. Listed are the Talairach coordinates, voxel number (size),
and significance level for each region. p values denote significant differences in connectivity between APOE4� and APOE4� groups. *Significant at p � 0.05 after Bonferroni correction for multiple comparisons.
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dependent increase in MCBP values, with an odds ratio of 5.04
(95% CI, 2.53–10.2) for likelihood of high MCBP in individuals
with an APOE4 allele (Morris et al., 2010). Effects of the APOE4
allele have been demonstrated in amyloid imaging studies in in-
dividuals with moderate AD (Drzezga et al., 2009) and in cogni-
tively normal individuals (Reiman et al., 2009; Small et al., 2009;
Morris et al., 2010). In addition, in AD, the APOE4 allele has been
shown to have greater impairment on memory retention,
whereas noncarriers were more impaired on tests of working
memory, executive function, and language (Wolk et al., 2010).
We observed, in the absence of fibrillar A� plaque deposition,
regional alterations in fcMRI in many of the same brain areas that
show disrupted connectivity in PIB� individuals and in frank
AD (Sheline et al., 2010). Interestingly, most of the regions iden-
tified with effects of APOE4, in particular, bilateral hippocampus
and left parahippocampus, had decreased connectivity with the
precuneus. This result stands in contrast to two small resting-
state studies of APOE4 effects on DMN finding increased connec-
tivity (Filippini et al., 2009; Fleisher et al., 2009). There was no
effect of regression analysis on results using CSF A�42 as a covari-
ate. Further, in post hoc analyses of the subset of 70 participants
screened to exclude those with abnormally low CSF A�42 levels,
we found similar patterns of abnormal functional connectivity,
although there were less regions that survived, perhaps due to a
reduced sample size (n � 70 vs 100) or to an effect of CSF A�42

levels. These results suggest that mechanisms resulting in in-
creased neuronal toxicity might already be in place before low-
ered A�42 CSF levels.

Altered functional connectivity between the posterior and an-
terior portions of the default-mode network has been described
in AD (Greicius and Menon, 2004) and in preclinical A� plaque
deposition (Hedden et al., 2009; Sheline et al., 2010). We found
these same regional differences in precuneus connectivity in the
current study as seen in AD, with the exception of increased
anticorrelation with dorsal AC and left superior temporal cortex/

frontal-parietal operculum. In addition to differences predicted
from a priori regions in AD, we also found additional regions
with alterations in precuneus connectivity in APOE4 allele carri-
ers in whole-brain exploratory analyses, indicating that altered
resting-state functional organization already had occurred in
normal aging in the presence of APOE4 genotype but in the ab-
sence of deposition of A� plaques. However, interpretive caution
is warranted since differences were observed in exploratory anal-
yses and require replication in an independent sample. One
interesting discrepancy was observed between the increased con-
nectivity with MPFC in the a priori analysis versus decreased
connectivity with MPFC in whole-brain analysis. We note, how-
ever, that the MPFC region from whole-brain analysis was con-
siderably more caudal (z � �12) than the a priori region (z �
18), and as such has different medial network connections
(Carmichael and Price, 1996). The significance of these regions of
altered connectivity remains to be determined but, as discussed
below, may reflect activity-dependent APOE4 effects on A� amy-
loid deposition and on neuronal stability. We note that most of
the alterations involved decreased connectivity with the precu-
neus and most of these additional regions were also in the DMN,
highlighting the importance of early damage to the DMN as a
potential manifestation of preclinical AD.

Regions in the DMN (Raichle et al., 2001) exhibit structural
and functional connectivity that converge on the precuneus and
posterior cingulate (Hagmann et al., 2008). During attention-
demanding tasks, there are decreases in activity, correlated with
task difficulty and successful memory encoding (Lustig et al.,
2003; Daselaar et al., 2004). Patients with mild AD (Lustig et al.,
2003), mild cognitive impairment (Petrella et al., 2007), and pre-
clinical A� amyloid deposition (Sperling et al., 2009), however,
have demonstrated a paradoxical reversal in this pattern, with
increased task-related fMRI activity in areas of A� deposition,
implicating amyloid deposition in dysfunctional brain networks
supporting memory formation. Further, we have shown that the
regions with earliest A� deposition lie within the DMN and also
have the highest resting metabolic activity (Buckner et al., 2005).
Since DMN regions are known to have the highest resting-state
metabolic activity, it may be that those APOE4-mediated mech-
anisms that depend on metabolic activity, such as decreased
transport and damage to astroglia, occur at a higher rate within
the DMN regions, and that these effects predate deposition of A�
plaques.

The effect of APOE4 appears to operate through both A�
metabolism effects and non-A� effects. Clear evidence supports
A� metabolism effects as a major mechanism for APOE genotype
influence on AD. Histopathological studies demonstrated a pos-
itive correlation between APOE4 dose and A� plaque density
(Rebeck et al., 1993) and increased neuritic plaques (Tiraboschi
et al., 2004). Further, cognitively normal subjects had an APOE4
dose-dependent increase in fibrillar A� plaque burden, detected
by amyloid imaging (Reiman et al., 2009). Studies have also
found that APOE4 was more effective than APOE3 at increasing
A�40 aggregation (Wisniewski et al., 1994). In addition to effects
on fibrillogenesis, there is evidence that APOE4 alters both brain
transport and metabolism of A�. A� in complex with APOE2 and
APOE3 is cleared more rapidly from the brain than A� com-
plexed to APOE4 (Deane et al., 2008).

Additional evidence suggests that APOE4 also plays a role in
non-A�-mediated mechanisms (Zhong and Weisgraber, 2009),
resulting in decreased neuronal stability and plasticity. Among
critical differences are a lower stability of the APOE4 isoform
with greater propensity to form toxic aggregates (Hatters et al.,

Figure 2. Altered functional connectivity of the precuneus in cognitively normal PIB�
APOE4� versus APOE4� participants. The graph compares regional correlation magnitudes
for APOE4� and APOE4� individuals for regions shown in Figure 1. L, Left; R, right; Sup
Temp/F-P O, superior temporal gyrus/frontoparietal operculum.
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2006); lower E4 affinity for small lipoproteins, resulting in less
effective transport of lipids required for neuronal synaptogenesis,
maintenance, and repair (Dong et al., 1994); and increased cleav-
age of APOE4 by neuronal protease, forming fragments that es-
cape the secretory pathway and lead to neuronal death (Harris et
al., 2003). An isoform-specific effect of APOE on neurite out-
growth has been reported and, although inconclusive regarding
the effects of APOE on neuronal processes (Kim et al., 2009), it is
possible that astrocytes contribute more directly to the associa-
tion of APOE4 and AD than had previously been thought. An
interesting phenomenon involves a switch in APOE4 expression.
Normally APOE is only expressed in astrocytes and other glial
cells. However, under stressful conditions, neurons also express
APOE (Xu et al., 2006). Further, APOE4 produced within neu-
rons is subject to cleavage by neuronal protease, resulting in toxic
fragments. These toxic fragments have been observed in AD pa-
tients and in transgenic mice expressing APOE4 in neurons
(Zhong et al., 2009). An additional pathological mechanism in-
volves APOE4 alteration of the ability of astrocytes to facilitate
neuronal function: Over most of a lifetime, although compro-
mised, astrocyte function is sufficient in non-stressed conditions
(Zhong et al., 2009). However, in the presence of later-life stres-
sors such as ischemia, oxidative stress, and A� toxicity, astrocyte
support can become less effective. Thus, APOE4 can contribute
to AD pathology by acting through both A�-dependent and A�-
independent pathways.

Although many APOE4 changes in our study occurred in the
same areas that are affected in AD and these effects could be
interpreted as very early manifestations of AD, our exploratory
whole-brain analyses revealed other regions with altered func-
tional connectivity and may represent APOE4 effects that are
independent of AD pathology. For example, APOE4 genotype
could be associated with a genetically altered functional connec-
tivity, some portion of which is unassociated with AD. Alterna-
tively, these changes could have pathological significance and be
associated with toxic APOE4 allele effects independent of AD-
related toxicity. The current finding that APOE4 allele carriers
had alterations in precuneus resting-state functional connectivity
with other important DMN regions highlights the importance of
integrity of the DMN (Raichle et al., 2001). Indeed, a role for an
APOE4 effect mediated through metabolic demands is suggested
by the distribution of preclinical fibrillar A� falling within DMN
regions (Shulman et al., 1997; Raichle et al., 2001; Buckner et al.,
2005), which have very high resting metabolic demands. Evi-
dence from mouse models (Cirrito et al., 2005) suggests neuronal
activity-dependent increase in production of A�. In APOE4 allele
carriers, who have chronic deficient astrocyte support, the vul-
nerability of DMN regions to neuronal damage could be trig-
gered in the face of additional burden, such as ischemia or
oxidative stress. This could help to explain the greater risk and
earlier age of onset of dementia in APOE4 carriers. Longitudinal
studies will be important to determine the time course of any
alterations in resting-state functional connectivity, both those
that appear independent of fibrillogenesis and, particularly, those
that appear to progress to neuronal dysfunction and damage, to
help plan the optimal timing for potential interventional studies
in individuals at risk for symptomatic AD.
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