4,345 research outputs found

    Theoretical models of planetary system formation. II. Post-formation evolution

    Get PDF
    We extend the results of planetary formation synthesis by computing the long-term evolution of synthetic systems from the clearing of the gas disk into the dynamical evolution phase. We use the symplectic integrator SyMBA to numerically integrate the orbits of planets for 100 Ma, using populations from previous studies as initial conditions.We show that within the populations studied, mass and semi-major axis distributions experience only minor changes from post-formation evolution. We also show that, depending upon their initial distribution, planetary eccentricities can statistically increase or decrease as a result of gravitational interactions. We find that planetary masses and orbital spacings provided by planet formation models do not result in eccentricity distributions comparable to observed exoplanet eccentricities, requiring other phenomena such as e.g. stellar fly-bys to account for observed eccentricities

    Device and method for frictionally testing materials for ignitability

    Get PDF
    Test apparatus for determining ignition characteristics of various metal in oxidizer environments simulating operating conditions for materials is invented. The test apparatus has a chamber through which the oxidizing agent flows, and means for mounting a stationary test sample therein, a powered, rotating shaft in the chamber rigidly mounts a second test sample. The shaft is axially movable to bring the samples into frictional engagement and heated to the ignition point. Instrumentation connected to the apparatus provides for observation of temperatures, pressures, loads on and speeds of the rotating shaft, and torques whereby components of stressed oxygen systems can be selected which will avoid accidental fires under working conditions

    Faraday rotation: effect of magnetic field reversals

    Full text link
    The standard formula for the rotation measure, RM, which determines the position angle, ψ=RMλ2\psi={\rm RM}\lambda^2, due to Faraday rotation, includes contributions only from the portions of the ray path where the natural modes of the plasma are circularly polarized. In small regions of the ray path where the projection of the magnetic field on the ray path reverses sign (called QT regions) the modes are nearly linearly polarized. The neglect of QT regions in estimating RM is not well justified at frequencies below a transition frequency where mode coupling changes from strong to weak. By integrating the polarization transfer equation across a QT region in the latter limit, I estimate the additional contribution Δψ\Delta\psi needed to correct this omission. In contrast with a result proposed by \cite{BB10}, Δψ\Delta\psi is small and probably unobservable. I identify a new source of circular polarization, due to mode coupling in an asymmetric QT region. I also identify a new circular-polarization-dependent correction to the dispersion measure at low frequencies.Comment: 25 pages 1 figure, accepted for publication in The Astrophysical Journa

    Decimetric gyrosynchrotron emission during a solar flare

    Get PDF
    A decimetric, microwave, and hard X-ray burst was observed during a solar flare in which the radio spectrum below peak flux fits an f+2 power law over more than a decade in frequency. The spectrum is interpreted to mean that the radio emission originated in a homogeneous, thermal, gyrosynchrotron source. This is the first time that gyrosynchrotron radiation has been identified at such low decimetric frequencies (900-998) MHz). The radio emission was cotemporal with the largest single hard X-ray spike burst ever reported. The spectrum of the hard X-ray burst can be well represented by a thermal bremsstrahlung function over the energy range from 30 to 463 keV at the time of maximum flux. The temporal coincidence and thermal form of both the X-ray and radio spectra suggest a common source electron distribution. The unusual low-frequency extent of the single-temperature thermal radio spectrum and its association with the hard X-ray burst imply that the source had an area approx. 10(18) sq cm a temperature approx 5x10(8) K, an electron density approx. 7.10(9) cu cm and a magnetic field of approx. 120 G. H(alpha) and 400-800 MHz evidence suggest that a loop structure of length 10,000 km existed in the flare active region which could have been the common, thermal source of the observed impulsive emissions

    Planet Population Synthesis

    Full text link
    With the increasing number of exoplanets discovered, statistical properties of the population as a whole become unique constraints on planet formation models provided a link between the description of the detailed processes playing a role in this formation and the observed population can be established. Planet population synthesis provides such a link. The approach allows to study how different physical models of individual processes (e.g., proto-planetary disc structure and evolution, planetesimal formation, gas accretion, migration, etc.) affect the overall properties of the population of emerging planets. By necessity, planet population synthesis relies on simplified descriptions of complex processes. These descriptions can be obtained from more detailed specialised simulations of these processes. The objective of this chapter is twofold: 1) provide an overview of the physics entering in the two main approaches to planet population synthesis and 2) present some of the results achieved as well as illustrate how it can be used to extract constraints on the models and to help interpret observations.Comment: 23 pages, 8 figures, accepted for publication as a chapter in Protostars and Planets VI, University of Arizona Press (2014), eds. H. Beuther, R. Klessen, C. Dullemond, Th. Henning. Updated references relative to v

    Reconnection in Marginally Collisionless Accretion Disk Coronae

    Full text link
    We point out that a conventional construction placed upon observations of accreting black holes, in which their nonthermal X-ray spectra are produced by inverse comptonization in a coronal plasma, suggests that the plasma is marginally collisionless. Recent developments in plasma physics indicate that fast reconnection takes place only in collisionless plasmas. As has recently been suggested for the Sun's corona, such marginal states may result from a combination of energy balance and the requirements of fast magnetic reconnection.Comment: Revised in response to referee. Accepted ApJ. 11 pp., no figures. Uses aastex 5.0

    Theoretical models of planetary system formation: mass vs semi-major axis

    Get PDF
    Planet formation models have been developed during the last years in order to try to reproduce the observations of both the solar system, and the extrasolar planets. Some of these models have partially succeeded, focussing however on massive planets, and for the sake of simplicity excluding planets belonging to planetary systems. However, more and more planets are now found in planetary systems. This tendency, which is a result of both radial velocity, transit and direct imaging surveys, seems to be even more pronounced for low mass planets. These new observations require the improvement of planet formation models, including new physics, and considering the formation of systems. In a recent series of papers, we have presented some improvements in the physics of our models, focussing in particular on the internal structure of forming planets, and on the computation of the excitation state of planetesimals, and their resulting accretion rate. In this paper, we focus on the concurrent effect of the formation of more than one planet in the same protoplanetary disc, and show the effect, in terms of global architecture and composition of this multiplicity. We use a N-body calculation including collision detection to compute the orbital evolution of a planetary system. Moreover, we describe the effect of competition for accretion of gas and solids, as well as the effect of gravitational interactions between planets. We show that the masses and semi-major axis of planets are modified by both the effect of competition and gravitational interactions. We also present the effect of the assumed number of forming planets in the same system (a free parameter of the model), as well as the effect of the inclination and eccentricity damping.Comment: accepted in Astronomy and Astrophysic
    corecore