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ABSTRACT

Context. Planet formation models have been developed during the past years to try to reproduce what has been observed of both the
solar system and the extrasolar planets. Some of these models have partially succeeded, but they focus on massive planets and, for
the sake of simplicity, exclude planets belonging to planetary systems. However, more and more planets are now found in planetary
systems. This tendency, which is a result of radial velocity, transit, and direct imaging surveys, seems to be even more pronounced for
low-mass planets. These new observations require improving planet formation models, including new physics, and considering the
formation of systems.

Aims. In a recent series of papers, we have presented some improvements in the physics of our models, focussing in particular on the
internal structure of forming planets, and on the computation of the excitation state of planetesimals and their resulting accretion rate.
In this paper, we focus on the concurrent effect of the formation of more than one planet in the same protoplanetary disc and show the
effect, in terms of architecture and composition of this multiplicity.

Methods. We used an N-body calculation including collision detection to compute the orbital evolution of a planetary system.
Moreover, we describe the effect of competition for accretion of gas and solids, as well as the effect of gravitational interactions

o between planets.

IS Results. We show that the masses and semi-major axes of planets are modified by both the effect of competition and gravitational

o interactions. We also present the effect of the assumed number of forming planets in the same system (a free parameter of the model),

— as well as the effect of the inclination and eccentricity damping. We find that the fraction of ejected planets increases from nearly 0

< to 8% as we change the number of embryos we seed the system with from 2 to 20 planetary embryos. Moreover, our calculations

. show that, when considering planets more massive than ~5 Mg, simulations with 10 or 20 planetary embryos statistically give the

3 same results in terms of mass function and period distribution.

©

8 Key words. planets and satellites: formation — planets and satellites: composition — planetary systems

3

° 1. Introduction process which is far from being fully understood for the mo-
— ment, but also all the interactions between these planets. Among
w0 Since the pioneering discovery of 51 Peg b (Mayor & Queloz all these interactions, one can mention the following.

- 1995), the first extrasolar planet orbiting a solar type star,  _ Growing planets, in particular when they are close to each
g the statistics of planetary observations have shown exponen- other, are competitors for the accretion of solids and gas.

= tial growth. This t@ndency has been amplified dl}rlng th? past  _ Planetesimal accretion can be strongly perturbed by the pres-
= years by the growing n‘umber of planetary candlglates dlSCOY‘ ence of neighbouring planets that can generate density waves
0 ered by Kepler (Borucki et al. 2011). One interesting feature in of solids thanks to the excitation they produce in the ran-
< these planetary observations, which is a characteristic of both dom velocity of planetesimals (Guilera et al. 2010, 2011).
g radial velocity and transit surveys, is that the number of plane- Depending on the location of planets, the planet-mass ra-
= tary systems is also growing ext.remely rapidly (see e.g. Lovis tio, the density profile of the disc, and the size of planetes-
S etal 2011; Mayor et al. 2011; Lissauer et al. 2011). Such plan- imals, the accretion rate of planetesimals can be reduced or
5] etary systems are very interesting for planet formation theory, enhanced.

.6' since they can provide constraints on the processes acting during  _ The formation of a planet in the wake of another one is
S planet formation. For example, the presence of resonant systems strongly perturbed. This was shown in the case of the so-
- seems to be very probably linked to migration during planet for- lar system (Alibert et al. 2005b) and the HD 69830 sys-
9 mation. On th('i other hand, from the t'heoretlcal point of view, tem (Alibert et al. 2006) using simplified models.

= and as we see in this paper, the formation of a planetary system  _ Gravitational interactions between forming planets modify
< is a problem significantly more difficult to solve than the forma- their migration and may lead to mean-motion resonances
s tion of an isolated planet. systems.

e Indeed, the formation of a planetary system involves notonly =~ — Collisions between protoplanets, or ejections of some plan-
3 the formation process of the individual planets themselves, a ets, are likely to occur during the whole formation phase.

2]
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— Gap formation in a disc is modified when more than one
planet is present. Moreover, the merging of two neighbour-
ing gaps leads to modification of migration (see Masset &
Snellgrove 2001).

— When a planet forms a gap, the outer boundary of the gap
may represent a place of very reduced type I migration, thus
acting as a planet trap (Masset et al. 2006).

In a forthcoming series of papers, we intend to improve our
planet formation models, in terms of both the physical and
numerical treatments of some of the important processes in-
volved in the formation of a system (migration, protoplanetary
disc structure and evolution, and planet internal structure)
and to include some of the aforementioned interaction effects.
Improved disc models and planet internal structure models
have been described in Mordasini et al. (2012a,b, M12a and
M12b in the following) and Fortier et al. (2013, F13 in the
following) and improved migration models are presented in
Dittkrist et al. (in prep.). In this paper, we focus on the effect of
forming more than one planet in the same protoplanetary disc.
We present the numerical approach used to compute the gravita-
tional interactions and collisions between planets, the treatment
of the competition for solid accretion, and the differential ef-
fect of having more than one planet growing and migrating in
the same disc. The interactions between forming planets, medi-
ated through the gas component of the protoplanetary disc (a first
planet modifying the protoplanetary disc — e.g. by gap formation
or spiral wave generation — this leading to, e.g., a modified mi-
gration of a second planet), will be considered in another work,
since it requires the development of new numerical models. As
a consequence, although we consider populations of planets that
are not fundamentally different from observed populations, our
results should only be considered as a step toward a complete un-
derstanding of planetary population, and will likely be improved
and modified in the future. The specific application of our mod-
els to the case of the solar system will be considered in a future
paper, since the process of gap merging is likely to have played
an important role in this case (see Walsh et al. 2011).

The paper is organized as follows. We present in Sect. 2 a
summary of the most important physical features of our mod-
els, summarizing the work presented elsewhere (for details see
M12a; M12b; F13). This section is presented for the sake of
completeness, and can be skipped by readers having read the pa-
pers mentioned above. In Sect. 3, we describe the computation
of the planet’s orbital evolution (including planet-planet gravi-
tational interactions and disc-planet interactions) and collision
detection. In Sect. 4, we present our treatment of the competi-
tion for the accretion of solids and gas. In Sect. 5 we present
the results, considering both an example of ten-planet system
formation models, and the results of planetary population syn-
thesis, comparing the case where only one planet forms in the
protoplanetary disc, and the case where multiple planets form.
As we see later, the number of planets growing in the disc is a
free parameter of the model, and we present in this paper the
case where 1, 2, 5, 10, and 20 planetary embryos grow and mi-
grate in the disc and discuss the sensitivity of the results to this
number. Finally, in Sect. 6, we discuss our results and limitations
and future developments of the models.

2. Formation model

The formation model consists of different modules, each of them
computing one important class of physical processes involved
during the formation of a planetary system. These modules are
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related to the protoplanetary disc structure and evolution (in-
cluding both vertical and radial structure), the computation of
the planetesimals’ dynamical properties and accretion rate, the
planets’ internal structure, and the dynamical interactions be-
tween planets and between the disc and the planets. These differ-
ent modules have already been described elsewhere (e.g. Alibert
et al. 2005a, hereafter A05; M12a; M12b; F13).

2.1. Protoplanetary disc: gas phase
2.1.1. Vertical structure

The structure of protoplanetary discs is complex and different
effects may be important. There could be irradiation and also
the presence of a dead zone. In our model, the vertical disc
structure is computed by solving the equations for hydrostatic
equilibrium, energy conservation, and diffusion for the radiative
flux (see AO5; F13).

This calculation provides us with the vertically averaged vis-
cosity as a function of the surface density in the disc. In the mod-
els presented here, we assume that the local viscosity is given
by the Shakura-Sunyaev approximation (Shakura & Sunyaev
1973), v = a/Cf/Q, where C is the local sound speed, Q the
Keplerian frequency, and « a free parameter, taken to be 2x 1073
in this paper.

2.1.2. Evolution

The evolution of the gas disc surface density is computed by
solving the diffusion equation:
d 3
22 n 2 g
or

E ror +XZ,(r) + Qplanet(r)~ (H

Photoevaporation is included using the model of Veras &
Armitage (2004):

3,=0 for R< R,, 2)
Y, < R7! for R > R,

where R, is usually taken to be 5 AU, and the total mass loss due
to photo-evaporation is a free parameter. The sink term Q'plane[ is
equal to the gas mass accreted by the forming planets. For every
forming planet, gas is removed from the protoplanetary disc in
an annulus centred on the planet and with a width equal to the

o Mo\ 1/3
planet’s Hill radius Ry = dplanet ( 3 1{'}:‘)

Equation 1 is solved on a grid that extends from the inner-
most radius of the disc to 1000 AU. At these two points, the sur-
face density is constantly equal to nought. The innermost radius
of the disc is of the order of 0.1 AU and is taken from observa-
tions (see Table 1 in Sect. 5.2).

2.2. Protoplanetary disc: solid phase
2.2.1. Planetesimal characteristics

In our model, we consider two kinds of planetesimals: rocky and
icy. These two kinds of planetesimals differ by their physical
properties, in particular by their mean density (3.2 g/cm? for the
former, 1 g/cm? for the latter). Initially, the disc of rocky plan-
etesimals extends from the innermost point in the disc (given
by the fourth column of Table 1 in Sect. 5.2), to the initial loca-
tion of the ice line, whereas the disc of icy planetesimals extends
from the ice line to the outermost point in the simulation disc.
The location of the ice line is computed from the initial gas
disc model, using the central temperature and pressure. The ice
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sublimation temperature we use depends on the total pressure. In
our model, the location of the ice line does not evolve with time.
In particular, no condensation of moist gas or sublimation of icy
planetesimals is taken into account. Moreover, the location of the
ice line being based on the central pressure and temperature, the
ice line is supposed to be independent of the height in the disc. In
reality the ice line is likely to be an “ice surface” whose location
depends on the height inside the disc (see Min et al. 2011). We
assume that all planetesimals have the same radius (of the order
of 100 m) and that this radius does not evolve with time. The
extension of our calculations towards a non-uniform and time-
evolving planetesimal mass function will be the subject of fu-
ture work. The assumed radius of the planetesimals has a strong
effect on the resulting formation process of planetary systems.
Increasing their radius to a few tens of kilometers severely de-
creases their accretion rate and the growth of planets. This effect
was discussed in F13.

2.2.2. Planetesimal surface density and excitation

The eccentricity and inclination of planetesimals are important
since they in part govern the accretion rate of solids and the abil-
ity of planets to grow. In the present paper, we follow the ap-
proach presented in F13 of computing the rms eccentricity and
inclination of planetesimals as a result of excitation by planets
and damping by gas drag. Since more than one planet form in the
same disc, planetesimals excited by a planet can remain excited
when they enter the feeding zone of another planet, modifying
their capture probability.

The dynamical state of the planetesimal disc is computed by
solving differential equations that describe the evolution of the
excitation and damping rates of their mean eccentricity and incli-
nation. As pointed out in F13, the memory of the initial value of
the planetesimals eccentricity and inclination can last for a non-
negligible time. We assume here that the initial excitation state
of planetesimals is the one resulting from the self-interaction
between planetesimals alone (cold planetesimals initially). This
corresponds to the assumption that planetary embryos (whose
mass is 1072 M) appear instantaneously, as a result of, say, gas-
solid interactions (e.g. Johansen et al. 2007).

2.3. Planetary growth and competition
2.3.1. Solid accretion rate

We start our calculation with a collection of low-mass embryos
(mass 1072 Mg), which may accrete solids and gas, and may
migrate in the protoplanetary disc. The solid accretion rate of
a given embryo is computed following the approach described
in F13, including the effect of the atmosphere, which enhances
the cross-section. The latter is parametrized by the embryo cap-
ture radius, the effective radius of the planets for the accretion of
planetesimals, which is computed using the results of Inaba &
Ikoma (2003), and is given by the following implicit equation:

o2 4 20 Rep)
30gas(Reap)Reap | Vrel Reap
Rplanetesimals = Gm R | 3)
20planctesimals | 2 4 29" Rep)
rel Ru

' Here, we do not include the radial drift of planetesimals. Therefore,

planetesimals actually enter the feeding zone of another planet, if the
feeding zone borders themselves move as a result of planetary growth
and migration. The computation of the orbital drift of planetesimals will
be the subject of future work.

where Rpjanetesimals 18 the physical radius of the planetesimals, pgqs
is the density at a distance R, from the planet centre, m(Rcap)
is the planetary mass inside the sphere of radius R.,, centred
on the planet’s centre, and v, is the relative velocity between
the planet and the planetesimals, which results from their excita-
tion state. Tests have shown that the capture radii obtained with
these approximate formula are very close to the ones obtained
by computing the trajectory of planetesimals inside the plane-
tary envelope (see the method described in A05).

2.3.2. Gas accretion

The accretion of gas by growing planets is the result of plane-
tary contraction. This is computed by solving the internal struc-
ture equations for the planetary envelope, considering as energy
source both the accretion energy of planetesimals and the com-
pression work released by the contraction of the planetary en-
velope. The method is similar to the one presented in F13, to
which the reader is referred to for more details. Note that we
assume in this model that the dust opacity in the planetary en-
velope is reduced compared to interstellar values (see Pollack
et al. 1996; Movshovitz et al. 2010). For the sake of simplicity
and following the approach of Pollack et al. (1996), we use here
a reduction factor of 0.01. We stress, however, that this value
is probably still too high and refer the reader to discussions in
Mordasini et al. (in revision) for an in-depth discussion of this
effect. The goal of this paper being the differential effect of mul-
tiplicity, the exact value of the opacity reduction factor is not as
important.

2.4. Disc-planet interactions

Disc-planet interactions lead to planet migration, which can
occur in different regimes. For low-mass planets, not massive
enough to open a gap in the protoplanetary disc, migration oc-
curs in type I (Ward 1997; Tanaka et al. 2002; Paardekooper et al.
2010, 2011). For higher mass planets, migration is again subdi-
vided into two modes: disc-dominated type II migration, when
the local disc mass is higher than the planetary mass (the mi-
gration rate is then simply given by the viscous evolution of the
protoplanetary disc), and planet-dominated type II migration in
the opposite case (see Mordasini et al. 2009a). The transition
between type I and type II migration occurs when (Crida et al.
2006)

g Hdisc

SOMstar
s 4
4 Ry @)

MplanerRe

where Hgis is the disc scale height at the location of the planet,
2

and Re = M is the Reynolds number at the location of the
planet. We use in our model an analytic description of type I
migration, which reproduces the results of Paardekooper et al.
(2011), which include the effect of co-rotation torque and the
fact that discs can be non-isothermal. A detailed description of
this model is presented in Dittkrist et al. (in prep.).

3. Planet orbital evolution

A key component of our multiple planetary system model is
the calculation of the gravitational interactions between the em-
bryos. This component is not necessary for describing the evo-
lution of a single planet, but for a multiple planetary system, it
can be very important. Gravitational interactions can disturb the
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orbit of planets and, therefore, increase their collision probabil-
ity, or inversely they can force them to be trapped in resonances,
which can reduce the probability of collision. In this section we
describe our method to calculate the gravitational interactions
between the planets and the collision detection (see Carron 2013,
for more details).

3.1. Equations of motion

In the N-body part, we treat each planetary embryo as a point
mass. A body is characterized by its position x, its velocity X,
and its mass m. According to Newton’s law of universal gravita-
tion, the acceleration of the ith body (¥) can be written as

N
£i=-G Y m T =012 N )
j=0,j#i |xi x]|

where G is the gravitational constant and N the number of plan-
etary bodies. The index O refers to the central star.

Equation 5 can be written for a heliocentric frame. With the
heliocentric position r;, defined as

ri = Xx; — Xy, i=1,2,3...N, (6)

and with the relation 7; = X; — Xy, we can write the equation of
motion as

; X ri—rj rj
g mid—— I )

i"iz—G(m0+mi) 3 j | 3 JE
r — rj| j

i j=1j#i

withi = 1,2,3...N. This system of coupled second-order differ-
ential equations with 3n dimensions is solved using a Bulirsch-
Stoer integration scheme.

3.2. Migration and damping

Migration plays a central role during the formation process of
planets. Thanks to the gravitational interaction between the plan-
ets and the gas disc, the planets can move through the disc. The
migration pushes the planets inward or outward depending on
the properties of the disc and the mass of the planet. We use the
method of Fogg & Nelson (2007) to include the effect of disc-
planet interaction. The acceleration due to the migration can be
written as

v

am = ——,
m 2fm

®)
where 1, is the migration timescale defined as #,,, = —%, a is the
semimajor axis, and v the velocity of the body. This timescale is
computed following the work of Paardekooper et al. (2011) and
depends on the planetary mass, as well as on the local properties
of the disc. Details on the migration timescale computation can
be found in Mordasini et al. (2011) and Dittkrist et al. (in prep.).
This equation is valid for weak migration forces, which means #,
should be much longer than the orbital period.

The gravitational interactions of the planets with the gas disc
lead to a damping of the eccentricity and of the inclination of the
planets. We assume that the eccentricity and inclination damping
timescales are similar, and both equal one tenth of the absolute
value of the migration timescale. The ratio between the eccen-
tricity (and inclination) and semi-major axis damping timescales
is very uncertain, and the value we use there is just a rough order-
of-magnitude estimation. We present our tests for inferring the
effect of this parameter in Sect. 5.
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The accelerations caused by the damping of the eccentric-
ity aq. and of the inclination ag; are calculated as

w-rr
age = =2 rzte )
for the eccentricity and
k) k
aq = 2Bk (10)

fi

for the inclination, where k is the unit vector (0, 0, 1). Also here,
t. and #; should be much longer than the orbital period.

Putting all together we can calculate the total acceleration a;
of a planet as

(1)

where ag is acceleration due to the gravitation of the other bodies
as described in Eq. (7) with a, = #;.

ag=ag+ay + age + agi,

3.3. Collision detection

During the evolution of a planetary system, collisions between
planets may occur. We detect collisions by checking, after each
time step of the N-body code?, that two bodies are closer to each
other than the collision distance R, which we define as the sum
of both core radii (R = R; + R;). The numerical integration
has an adaptive time step (4), which ensures that an integration
with the desired precision is obtained. In addition, we limit the
length of the N-body time step to a value less than the collision
timescale 7, which is calculated as follows:

1. For each pair of planets k, we approximate the positions
r1, rp of the two bodies at the time ¢ = 1y + At:

rito + Af)

x1(t0) + v1(10)At + %al(to)Atz (12)

rato + Af)

1
x2(to) +02(10)At + Sax(19) AL, (13)
where x1(#y), x2(ty) are the positions, v1(%y), v2(fo) the veloc-
ities, and ay (%), a»(tp) the accelerations at the time 7.
2. We define 74 as the minimum real solution for the collision
timescale of the equation:

(r1(to + At) — ra(ty + Af))? = R%. (14)
With the substitution
Ax = x1(tp) — x2(t0) (15)
Av = vy(to) — va(to) (16)
Aa = ai(tp) — ax(to), (17)
we get
1
I (Ax)? AF* + AvAaAr + ((Av)2 + Aan) AP

+2AxAvAt + (Ax)? — R? = 0. (18)

3. We are only interested in solutions with 7, < h, h being the
time step of the N-body integrator. If the distance between
the two bodies d at the time #;

d = |x1(t) — x2(10)l — R, (19)

2 The time step for the N-body is in general much shorter than the time
step required to compute planetary growth.
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is longer than the maximum change of the distance Adyax,

Admas = max (Jry(to + Af) = ra(to + An)| VAL € [tg, 10 + Ar])

max (JAv(to+Ar)+ 3 Aa(to+ A0 VAt € [to, to+Ar])

then, obviously, no real solution exists with 7, < At.
Calculating Adpax 1S not trivial; however, we can easily find
a maximum limit of Ady,,x using the triangle inequality:

Adnmax = max (|Av(to+Ar)+ 1 Aa(to+An?| VAt € [1o, to+Ar])
< max (Av|(fo+Af) +| 1 Aal(to+Ar)* VAt € [to,t0+At])

= |Av(to + A1) + $|Aal(to + Ar)>.

A

This leads to Adp,x < |Av|(fy + Af) + |%Aa|(t0 + Ar)?
4. We define 7 as the minimal 74, where k = 1...N(N — 1)/2.

Our model is very similar to the one described in Richardson
et al. (2000). The only difference is that we use a second-order
Taylor series for the approximation of the position instead of a
first-order one. Therefore the method is more accurate but has
the disadvantage to bring out a fourth-order equation instead of
a second-order one.

3.4. Collision handling

After each N-body time step we check for collisions. If one (or
more) is found, we merge the colliding bodies: the collisions are
treated as fully inelastic. This means that we remove the less
massive body and add its mass to the more massive one. We also
change the position and velocity of the more massive one so that
the total momentum of the centre of mass is conserved.

When two planets merge, the resulting planet has a core mass
that is the sum of the two core masses. The envelope mass of
the new planet is calculated as follows: we compute the colli-
sion energy and compare it to the binding energy of the more
massive planet’s envelope. If the former is higher, the envelope
of the planet is ejected; otherwise, it is conserved. In the case
where both planets are massive, each with large envelopes, our
treatment is not accurate. However, we do not expect such colli-
sions to occur, since these planets would probably be captured in
mutual resonances and would not collide. For details on the ac-
cretion of a solid embryo by a planet with an envelope we refer
the reader to Broeg & Benz (2012).

4. Competition for gas and solid accretion

The planet’s feeding zone is assumed to extend to 4 Ry on both
sides of the planet. In case a planet has any eccentricity, the feed-
ing zone extends from ayin — 4 Ryii tO dmax + 4 Ruin, where apmin
and amqx are the periastron and apoastron. An important effect in
our model is the treatment of the feeding zones of planets when
they overlap. Indeed, as in Pollack et al. (1996) and A0S, for ex-
ample, our model assumes that the planetesimal surface density
in a planet’s feeding zone is uniform. As a consequence, if the
two feeding zones of two different planets overlap, the planetes-
imal surface density in the combined feeding zone itself is con-
stant. This has a number of potentially important consequences:

— Since a planet’s envelope depends upon its luminosity, which
itself depends on the planetesimal accretion rate, hence on
the planetesimal surface density, when two feeding zones
overlap, the internal structure of the two planets is no longer
independent.

0.6
05 E
04 F
03 F
02 F
01 F
0.0 [
05 |

t=0yr

.4.1...1 L .. L N
t= 6700 yr

04 F.
0.3 F
02 f

0.1 Ebi

0.0
0.5

0.4
0.3

02 €.
0.1

0.0

i
6.0 6.5
Semi—major axis [AU]

4.5 5.0

Fig.1. Evolution of the eccentricity (y-axis) and semi-major axis
(x-axis, in AU) of a set of test particles under the influence of two plan-
ets without gas drag. Particles are coloured according to their initial lo-
cation: red for particles belonging to the feeding zone of the innermost
planet, blue for particles belonging to the feeding zone of the outermost
planet, and green for particles belonging to both feeding zones. The two
10 Mg planets are located at 5 AU and 5.6 AU. The first panel shows the
initial conditions, the second panel is the state after 600 orbital times of
the innermost planet, and the last panel is the state after 1200 orbital
times of the innermost planet. As can be seen, test particles are very ef-
ficiently mixed in the combined feeding zone on a short timescale. Only
planetesimals located in co-rotation resonance with one of the two plan-
ets are scattered on a longer timescale.

— Two planets sharing their feeding zones compete for the ac-
cretion of planetesimals. Interestingly enough, this does not
necessarily result in a reduced solid accretion rate. In gen-
eral, one planet is favoured (its accretion rate is increased
compared to the corresponding isolated situation), whereas
the other one will grow more slowly. This results simply
from the fact that if the two planets compete for the accretion
of the same planetesimals (which should result in a decrease
in the solid accretion rate for both planets), they also have
access to a much larger region of the disc (the union of the
two feeding zones of the two planets).

Numerically we proceed as follows. When two feeding zones
overlap, we consider that they merge into a big one, its inner
limit (@jpner) being the minimum of the two inner boundaries of
the separated feeding zones, and the outer limit (aoy) the maxi-
mum of the two outer ones. The surface density of the new feed-
ing zone is considered to be uniform, i.e. the solids surface den-
sity of the region is integrated to obtain the total mass, which is
then divided by the surface of the feeding zone.

To check that our prescription is a good approximation of re-
ality, we performed N-body calculations, considering two plan-
ets and a set of test particles. Figure 1 shows the semi-major axis
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and eccentricity of the test particles at different times. Particles
have different colours depending on their initial location (see
caption of Fig. 1). As can be seen in the figure, the planetesimals
are indeed very efficiently mixed, resulting in a quasi-uniform
surface density (and eccentricity) in a single feeding zone, thus
validating our approach.

Planets also compete for the accretion of gas. Indeed, there is
a maximum mass a planet can accrete during a given time step.
This mass is the sum of the mass already present in the planetary
gaseous feeding zone (which is assumed to extend to one Hill’s
radius on both sides of the planetary location) and of the mass
that can enter in the feeding zone during the time step, as a re-
sult of viscous transport (see F13). Since, as already mentioned
above, the gas accreted by forming planets is removed from the
protoplanetary disc, the mass reservoir and the viscous transport
are modified when a planet accretes a large amount of gas (in
particular, during the runaway gas accretion). These modifica-
tions can in turn modify the maximum mass another planet can
accrete.

5. Results
5.1. Formation of a ten-planet system

Before considering a population of planets, we study an exam-
ple of a ten-planet system formation model. We have considered
three models with the same initial conditions. The first one as-
sumes that only one planet forms in the protoplanetary disc®. The
second one takes into account the competition between plan-
ets for solids and gas accretion, the excitation of planetesimals
by all the planets, but not the gravitational interactions between
planets. The third model takes into account both the competition
for accretion and the gravitational interactions between form-
ing planets: the orbits of planets are computed using the N-body
described above. For the three models, the initial surface densi-
ties of gas and solids were taken to be 140 g/cm? and 6 g/cm?
at 5 AU, corresponding to 730 g/cm” and 8 g/cm? respectively
at 1 AU.

In the second model, we use a very simple prescription for
planetary collisions: as soon as two planets have the same semi-
major axis, the smallest one is either accreted or ejected by the
biggest one. The ratio of ejection to accretion probability is as-
sumed to be the same as for planetesimals (see A05). This is of
course a very simplified model, but its only purpose is to empha-
size the differences with the third model.

The first model led to a system with ten planets inside 2 AU,
and with masses ranging from 0.03 Mg to ~12 Mg, (Fig. 2, up-
per panel). The results using the second model are presented in
Fig. 2, middle panel. The planet that grows more massive is lo-
cated initially at 5.4 AU, a privileged place in terms of abundance
of solids and size of the feeding zone*. During its inward mi-
gration it encounters seven other smaller planets, one of which
is ejected while the others are accreted. The total mass that the
planet gains by accreting other embryos is 0.63 Mg. In the sys-
tem, the two outer planets that never suffer from any encounter
remain, so in total the system ends up with three planets out of
the initial ten. The final masses are 12, 2.9, and 1.5 My, the final

3 This means that we ran ten independent models, varying only the
initial location of the planetary embryo, which are taken as the same
initial location of planets in the ten-planet case.

4 The ice line is located at 2.8 AU, and the planet starting at 5.4 AU is
the planet starting both outside the ice-line, and closer to the star than
the others.
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Fig. 2. Three models for the formation of 10 planets. Top: formation
of 10 independent planets (each of them growing in an identical disc).
Middle: the competition for gas and solid accretion, as well as the
excitation of planetesimals by all planets, is taken into account. The
gravitational interactions between planets are not included. The cross
indicates an ejected planet, the big dots indicate collision between plan-
ets. Bottom: full model, including the competition for gas and solid
accretion, the excitation of planetesimals by all planets, and the gravi-
tational interactions between planets.

locations being 0.16 AU, 1 AU, and 1.8 AU respectively. The
formation of the most massive planet is almost identical as if it
were growing as an isolated planet. The inner embryos, most of
which are accreted, do not favour or slow down the growth of
the planet.
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Fig. 3. Eccentricity of planetesimals in the disc as a function of time
(x-axis) and semi-major axis (y-axis). The colour bar indicates the ec-
centricity values. In this model, the competition for gas and solid accre-
tion, as well as the excitation of planetesimals by all growing planets, is
included. This corresponds to the middle panel of Fig. 2.

As an illustration of the importance of planetary interactions,
we note that the final mass of the outermost planet turns out to
be 5.6 Mg, and its final location 0.75 AU (if only one planet is
considered), to be compared with 1.5 Mg at ~2 AU in the second
model. Indeed, in the multi-planet case, accretion is largely re-
duced when the planet enters regions of the disc already visited
by other embryos (and therefore with less material available) and
by the fact that random velocities of the (fewer) available plan-
etesimals in these regions are higher due to the perturbations of
the other protoplanets. The reduction of solid accretion could
also, however, reduce the critical mass, and therefore enhance
gas accretion. For this process to happen, however, the reduction
of solid accretion must occur for a planet that is already quite
massive, a situation that is not encountered in this simulation.

To illustrate the excitation of planetesimals by the ten plan-
ets, Fig. 3 shows the eccentricity of planetesimals in the disc
as a function of semi major axis and time in the second model.
Clearly, at the position of the protoplanets, the eccentricity is the
highest. As the planets grow, they perturb the disc to a great ex-
tent. In addition, as the disc dissipates, the damping effect of the
gas drag decreases, which results in overall higher excitation of
planetesimals.

Using the third model, we obtain a different system (see
Fig. 2, bottom panel). As we can see, in this case only three
planets are accreted by the most massive planet during its inward
migration, so the final number of planets in this system is seven.
Planets that before were considered to be accreted or ejected sur-
vive in the system due to resonance trapping. Also, orbit cross-
ing is possible without the loss or the ejection of the planet.
When the gravitational interactions are not considered, small
planets that are in the inner part of the disc are usually swept
out by a more massive, inwardly migrating planet. However,
as we can see from this example, this approximation underes-
timates the amount of these small, close-in planets. Therefore,
accurate formation of planetary systems should account for the
gravitational interactions of the protoplanets. To get the proper
orbital configurations in planetary systems, N-body calculations
are mandatory.

5.2. Planet population

We now present the effect of multi-planetary formation at
the population level, by comparing two identical models, one

Table 1. Characteristics of disc models.

Disc Mdisc (MG) dc (AU) Vinner (AU) Y
1 0.029 46 0.05 0.9
2 0.117 127 0.05 0.9
3 0.143 198 0.05 0.7
4 0.028 126 0.05 0.4
5 0.136 80 0.05 0.9
6 0.077 153 0.05 1.0
7 0.029 33 0.05 0.8
8 0.004 20 0.05 0.8
9 0.012 26 0.05 1.0
10 0.007 26 0.05 1.1
11 0.007 38 0.05 1.1
12 0.011 14 0.05 0.8

assuming only one planet growing in each protoplanetary disc,
the second one assuming that ten planetary embryos grow in
each of the discs. We stress that it is not our goal in the present
paper to reproduce the observed population of planets, but rather
to study the differential effect of having more than one planet
forming in a system, using parameters that lead to populations
that are not totally at odd with observations.

5.2.1. Initial conditions

The initial conditions are given by the characteristics of a pro-
toplanetary disc, and the ensemble of planetary embryos, whose
initial mass and semi-major axis are computed in the following
way. The starting location of the planetary embryos is selected at
random, using a probability distribution uniform in log. It ranges
from 0.1 AU to 20 AU. We moreover impose that two plane-
tary embryos should not start closer than 10 times their mutual
Hill radius. The initial mass of the planetary embryos is assumed
to be equal to 1072 Mg,

The initial gas disc surface density profiles we consider are
given by

My; -y 2-y
oot (1) o (2]
27Tac ro \70 ac

0

(20)

where ry is equal to 5.2 AU, and Mg, ac, y are derived from
the observations of Andrews et al. (2010). For numerical rea-
sons, the innermost disc radius, riner 18 taken at 0.05 AU, and
differs in some cases from the one cited in Andrews et al. (2010).
Although Andrews et al. (2010) derive a value for the viscosity
parameter «, we assume for simplicity that the viscosity parame-
ter is the same for all the protoplanetary discs considered. Using
a different @ parameter will be the subject of future work. We
assume that the mass of the central star is 1 M.

As in Mordasini et al. (2009a,b, M09a; M09 in the fol-
lowing), the planetesimal-to-gas ratio is assumed to scale with
the metallicity of the central star, with a ratio of 0.04 for solar
metallicity. For the disc models we consider, this corresponds to
solid surface densities ranging from 0 to 10 g/cm? at 5.2 AU,
with a long-tail distribution extending up to 50 g/cm?. For ev-
ery protoplanetary disc we consider, we therefore select at ran-
dom the metallicity of a star from a list of ~1000 CORALIE tar-
gets (Santos, priv. comm.). Finally, following Mamajek (2009),
we assume that the cumulative distribution of disc lifetimes de-
cays exponetially with a characteristic time of 2.5 Myr. When
a lifetime Ty is selected, we adjust the photoevaporation rate
so that the protoplanetary disc mass reaches 107> My, at the time
t = T4isc, when we stop the calculation.
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Fig. 4. Mass versus semi-major axis diagram for a population of planets,
assuming one planet grows in each disc. The colour code shows the frac-
tion of rocky planetesimals accreted by the planet. Planets whose core
is the result of the accretion of rocky planetesimals are in red, whereas
planets whose core has been made by the accretion of icy planetesimals
are in blue. The total number of point is 4936. Planets in the vertical line
at 0.05 AU are planets that reached the inner boundary of the computed
disc. If the computational domain were extended to lower semi-major
axis, their fate is uncertain. They could continue migrating toward the
central star and be accreted, or could stop their migration somewhere in
the inner disc cavity.
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Fig.5. Same as Fig. 4, but assuming now that ten planetary embryos
are growing and migrating in every protoplanetary disc. The number
of points is 5010. Planets on the vertical line at 1000 AU are planets
ejected from the system. Their mass represents their mass at the time of
ejection. Planets on the vertical line at 0.005 AU are planets that have
collided with the central star. We do not include in our models planet-
star interactions that could modify the orbital evolution of planets in the
innermost parts of the disc.

5.2.2. Mass versus semi-major axis diagrams

The number of planetary embryos we consider in each proto-
planetary disc is a free parameter. In order to ease the compari-
son between the two computations, the total number of planets
in each case is similar (at least at the beginning of the cal-
culation): we have considered 500 systems with ten planets,
and ~5000 systems with only one planet. The initial locations
of planets, in the two cases, are statistically the same, but, as op-
posed to what was presented in Sect. 5.1, the starting location of
planets in the one-planet case are not exactly the same as in the
ten-planet case.

Figure 4 shows the mass versus semi-major axis diagram of
synthetic planets, in the case where only one planet forms in the
system (case 1). The colour code is related to the composition
of the planetary core, which itself is the result of the accretion
of different kinds of planetesimals (icy planetesimals or rocky
planetesimals). Figure 5 presents the same results, but in the case
of ten planets per system.
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After comparing the two diagrams (Figs. 4 and 5), it appears
clearly that not all planets (in terms of mass and semi-major axis)
are affected in the same way by the presence of other bodies. In
particular, the sub-population of massive planets does not seem
to be affected as much, although planets in the ten-planet case are
slightly less massive. Another interesting difference is that plan-
ets in the one-planet case are located closer to the central star,
still in the same mass domain. The origin of both differences is
the competition between planets forming in the same disc. As
planets compete for the accretion of solids, their growth is de-
layed. They start to migrate later in the disc lifetime and start to
accrete gas in a runaway mode at a later time. As a consequence,
their final location is somewhat further out than in the one-planet
case, and their mass is lower. (The mass of the planets is plotted
using a logarithmic scale, which decreases the visual difference
between the two populations.)

In the sub-population of low-mass planets, in particular close
to the central star, the effect of multiplicity is very important.
In the ten-planet case, a population of close-in Earth- to super-
Earth mass planets appears, whereas this region is empty in the
case of one-planet systems. This difference stems from the grav-
itational interactions between planets in the same system. At a
fraction of an AU from the central star, the mass of solids (these
planets are made almost totally from solids) is not high enough
to grow a planet of a few Earth masses, at least not for the disc
masses we consider here. On the other hand, disc-planet angular-
momentum exchange alone (leading to migration) is not strong
enough for these planets to move planets from the outside toward
this region. As a consequence, planets at these distance are either
less massive than the Earth or more massive than ~10 Mg. In the
case of a multi-planetary system, planets interact gravitationally
with another member of the same system, which itself is mas-
sive enough to migrate appreciably. As a consequence, an inner,
low-mass planet can be pushed by resonant interaction toward
the inner parts of the protoplanetary disc. However, this does not
imply that the different planets are in mean-motion resonance at
the end of the protoplanetary disc lifetime. Indeed, depending
on the planetary mass, a mean-motion resonance can be broken
during a later phase of disc evolution.

A third sub-population that is notably different between the
two cases is the population of planets below 0.05 AU, at all
masses. The difference again stems from the resonant interaction
between planets. In the one-planet case, since the protoplane-
tary disc is assumed to only extend down to 0.05 AU, migration
ceases for planets below this radius. In the ten-planet case, on
the other hand, planets can suffer resonant interaction and enter
the innermost parts of the disc. It should be noted, however, that
this difference depends strongly on the adopted value of the disc
inner cavity radius.

A fourth difference is related to planets located at large dis-
tances from their central star. Obviously, since the initial loca-
tion of the planets is assumed to be smaller than 20 AU, plan-
ets in the one-planet case are all located in the inner regions of
the disc. (Although planets can migrate outwards during some
phases of their formation, they generally terminate their migra-
tion at a position closer to the star than the initial one.) In the
ten-planet case, gravitational interactions between planets can
lead to the scattering of planets either towards the outer regions
of the disc (few hundreds of AU), or to ejecting them from the
system alltogether (the outer boundary of the system is assumed
to be at 1000 AU). Some of the planets ejected from the inner re-
gions of the system, but still bound to the star, are quite massive
and could be compared with planets detected by direct imaging
(e.g. Marois et al. 2008; Kalas et al. 2008; Lagrange et al. 2009).
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Fig. 6. Distribution of the fraction of heavy elements Mo /Mpiane: for
the same simulations, differing only by the assumed number of plan-
etary embryos per system. Only planets more massive than 1M, have
been considered in these distributions.

Interestingly enough, there seems to be a lack of mas-
sive planets at “intermediate” distances (50—100 AU). It is not
presently clear if this is an effect of not having enough statistics,
or if this is a real effect (for example due to the initial location
of planetary embryos, assumed to be below 20 AU). In addition,
microlensing surveys have recently claimed to have discovered a
large population of massive free-floating planets. As can be seen
in Fig. 5, planets with very high masses can indeed be ejected
from the system during formation. We finally note that the re-
sults presented in Fig. 5 correspond to the state of the system
at the time the gas disc vanishes. We do not include the long-
term evolution of planetary systems in these calculations. Such
a study, and the study of the resulting eccentricity evolution of
planets, is beyond the scope of this paper but will be considered
in a forthcoming work (Pfyffer et al., in prep.). Such effects could
increase the number of ejected planets and, as a consequence, the
number of expected free-floating planets.

Finally, a last difference is in the composition of planets, in
particular in the super-Earth mass domain. Indeed, planets in
this mass range are notably richer in volatile elements in the
ten-planet case than in the one-planet case. The origin of this
difference is again related to a modified migration of planets,
thanks to gravitational interactions. The ice line is located in
our disc at a few AUs from the central star. As a consequence,
planets below 1 AU are in general devoid of volatiles, except if
they are massive enough to have migrated significantly. On the
other hand, in the multi-planet case, low-mass planets, which
start their formation in the cold parts of the disc (where plan-
etesimals are volatile rich), can be pushed to the volatile poor
regions of the disc by another external and more massive planet.
While this effect is likely to be quantitatively modified includ-
ing the orbital drifting of planetesimals as a result of gas drag,
this effect should qualitatively remain present in more detailed
models.

Also related to the composition of planets, we have com-
pared the mean metallicity of planets in the different cases. For
this, we have plotted in Fig. 6 the histogram of Mcore/Mpianet
for the different cases we considered (including the calculations
with 2, 5, and 20 planetary embryos, see below). Interestingly
enough, the mean heavy element fraction increases for plan-
ets forming in systems. This effect can be explained as fol-
lows: planets forming in systems acquire their mass on a longer
timescale (compared to single planets). As a consequence, they
reach the critical mass later, and have less time (until the gas disc
dissipates) to accrete gas.
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Fig.7. Same model as in Fig. 5, except that 5 (fop) or 20 (bottom) em-
bryos are assumed to form in the same protoplanetary disc. The number
of points are 4875 and 5000, respectively.

In both populations, models predict there is a population of
low-mass objects at distances between a few AU and 20 AU.
These represent planetary embryos that have not managed to
grow larger than a fraction of an Earth mass. Their outermost
location (20 AU) is simply the effect of the assumed initial loca-
tion of planetary embryos (which only extends to 20 AU). Their
innermost location corresponds to places in the disc where the
solid accretion rate of solids is so small that planetary embryos
do not grow noticeably during the lifetime of the gas disc.

6. Discussion and conclusions
6.1. Effect of multiplicity

In the previous section, we have presented the differential effects
of considering the formation of more than one planet in the same
disc. However, there are parameters that could potentially have
important effects on the results. In particular, we considered the
growth and migration of ten planetary embryos, and one may
wonder what would result if this number was changed. In ad-
dition, we mentioned earlier that the timescale for damping of
the planet’s eccentricity and inclination is theoretically poorly
known.

To check on the sensitivity of our results to the number of
starting embryos used, we initiated a set of additional simula-
tions with 2, 5, and 20 embryos. The resulting masses and semi-
major axis diagrams for the simulations with 5 and 20 planets
are depicted in Fig. 7. As can be seen in the two figures, and
after comparing with Fig. 5, the effect of the number of em-
bryos is modest, at least on the mass versus semi-major axis di-
agram, because globally the overall structure is similar. One can
note, however, that the population of planets at large distances
(beyond 50 AU) is larger in the case of 20 planetary embryos.
Moreover, the population of massive planets (larger than Jupiter)
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Fig. 8. Top: mean number of planets per system that are more massive
than a given value, for different simulations, assuming different num-
bers of planetary embryos initially present in the system. Middle: cumu-
lative mass function, considering only planets more massive than 5 Mg
still present in the system at the end of the simulation (planets colliding
with the central star or ejected are not considered). Botfom: cumulative
distribution of semi-major axis for the same population as in the middle
panel. The number of planetary embryos assumed in each set of simu-
lation is indicated on the panels. In the bottom panel, the planets that
have been transported inside 0.05 AU by gravitational interactions with
other planets of the same system.

is smaller in the 20-planet case. Finally, a population of interme-
diate planets (from super-Earth to Neptune mass) at a few AU
appears in the 20-planet case.

To quantify the effect of the initial number of planetary em-
bryos, we have also computed the average number (per system)
of planets larger than a given value, and compared the results for
the same set of simulations (assuming 1, 2, 5, 10, or 20 planetary
embryos are initially present in the same disc). As before, the
initial locations of planetary embryos are statistically similar in
all the cases. As can be seen in Fig. 8 (top panel), all the curves
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mean-motion resonances.

converge for high-mass planets, but diverge towards the lower
mass end. Simulations assuming a larger number of planetary
embryos tend to lead to the formation of more low-mass planets,
which is somewhat expected. Another interesting aspect is that
one notes a convergence of the curves as the number of planetary
embryos increases. We can conclude, for example, that simula-
tions assuming 10 or 20 planetary embryos lead to similar results
if one only considers planets more massive than a few M.

Considering the cumulative distribution of planetary masses
(Fig. 8, middle panel), taking objects more massive than 5 Mg
into account, it is clear that the mass function converges for more
than ten planetary embryos (see the light blue and purple lines).
The distribution of semi-major axis also presents a convergence
for more than ten planetary embryos (Fig. 8, bottom panel). Only
planets that are present in the system at the end of the simulation
are considered in this plot. Planets ejected or accreted by the cen-
tral star are not considered in the calculation. If one now consid-
ers all the planets, the fraction of ejected planets increases mono-
tonically with the number of planetary embryos initially present
in the simulation, from nearly O for 2 planetary embryos, to 3%,
5%, and 8% for 5, 10, and 20 planetary embryos respectively.

It is also interesting to compare the period ratios we ob-
tain, as a function of the number of planetary embryos initially
present in the system. Figure 9 presents the period ratios of all
planets more massive than 5 Mg, for the different simulations
presented above (starting with 5, 10, or 20 planetary embryos).
As can be seen in the figure, the importance of the mean-motion
resonances decreases when the number of planetary embryos in-
creases (see also Rein 2012): in the case of two planetary em-
bryos, nearly all the systems end in mean-motion resonance,
whereas this fraction is much smaller in the case of 20 plane-
tary embryos. Unlike the mass and semi-major cumulative his-
tograms, there is still a difference between the cases with 10
and 20 planetary embryos, which means that the precise archi-
tecture of planetary systems depends on the amount of planetary
embryos assumed to be present in the system.

6.2. Eccentricity and inclination damping

We also tested the effect of the timescale of planet’s eccentric-
ity and inclination damping, assuming a damping timescale in-
creased by a factor 10, or no damping at all (Fig. 11). This
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Fig.10. Semi-major axis versus eccentricity for three models. Top:
nominal ten-planet model. Middle: without eccentricity and inclination
damping. Bottom: with eccentricity and inclination damping timescales
increased by a factor 10 compared to the nominal model. The colour
code indicates the mass of the planet, in Earth masses (on log scale).

simulation obviously resulted in an increased mean eccentric-
ity of planets, at the end of the formation process (see Fig. 10).
However, the masses and semi-major axes of planets that sur-
vived the formation were not too different from the standard ten-
planet case presented in Fig. 5. The main difference can be seen
in the population of planets at distances between 10 and 100 AUs
and the number of ejected planets, which are more numerous in
the low damping case. Interestingly enough, the comparison be-
tween the number of planets at these distances, with the results
of future direct imaging surveys, could put some constraints on
these components of the model.

Interestingly enough, the period ratios obtained with less
damping, or else without any damping of eccentricity and incli-
nation, seem to be closer to the ones observed by Kepler (in par-
ticular, the fraction of planets close to mean-motion resonance is
decreased when the damping is reduced). Indeed, in our nomi-
nal ten-planet case, a larger fraction of planets than observed find
themselves at mean-motion resonances at the end of their forma-
tion. This suggests that the eccentricity and inclination damping
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1le-02 0

0.01 0.1 1 10 100

Semi—major axis [AU]

1000

Fig. 11. Same model as in Fig. 5, with modified eccentricity and inclina-
tion damping for planets. Top: no damping, bottom: damping timescale
increased by 10 compared to the nominal case. The number of points
are 4650 and 5030, respectively.

is overestimated in our models. A more detailed analysis of this
effect, as well as comparisons with Kepler results, will be pre-
sented in a forthcoming paper.

6.3. Limitations of the model

As for all theoretical models, the one presented in this paper is
limited in certain aspects. To put our results in perspective, we
now list some of the most important assumptions and limitations.
This will also provide a list of work we intend to do in the future.

6.3.1. Planetesimal disc

The numerical treatment of the disc of planetesimals is, in this
work, simple, because the characteristics of planetesimals only
depend on their semi-major axis. This is the case for the mass
(or radius), as well as for the eccentricity and inclination. More
specifically, we compute the evolution of the r.m.s eccentricity
and inclination of planetesimals, assuming that they are well de-
scribed by a Rayleigh distribution.

Although it constitutes an improvement with regard to for-
mer models (e.g. A05; M09a; M09b; M12b), where the exci-
tation and damping of planetesimals by forming planets and gas
drag was not computed accurately, this approach is limited in the
sense that some important processes are not included. Among
them, one can cite the orbital drifting of planetesimals, due to
gas drag, as well as the formation of a gap in the planetesimal
disc.

Moreover, as already mentioned, the mass of planetesimals
at a given radius does not evolve with time, implying that frag-
mentation and mass growth of planetesimals are not included.
We plan to improve these aspects by using a model similar to the
one recently proposed by Ormel & Kobayashi (2012). Finally,
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planetesimals have no effect on the orbital evolution of plan-
ets in this model: the planetesimal driven migration (e.g. Ormel
et al. 2012) and the damping of eccentricity and inclination by
planetesimals are not included in the model. These effects could
indeed be potentially very important in regions of the disc where
the gas surface density is low (e.g. outer parts of the disc) or at
the end of the disc lifetime, and during long-term evolution.

6.3.2. Planet-planet interaction through the protoplanetary
disc

As mentioned at the beginning of this paper, some interactions
between planets are mediated by the gas phase of the protoplan-
etary disc. Indeed, if massive enough, a first planet is likely to
modify the gas surface density in a substantial way, therefore
modifying angular-momentum exchange and migration. Such
effects have been studied in different papers (e.g. Masset &
Snellgrove 2001; Morbidelli & Crida 2007). In particular, it is
suspected that, when two planets grow massive enough to open
a gap in the disc, and when these two gaps merge, the angular
momentum evolution of the whole system can lead, under cer-
tain conditions (e.g. related to the mass ratio between the two
planets), to outward migration of both planets, catching them in
mean-motion resonance. This process is in particular believed
to have been at work during the late stage of the formation of
the solar system (e.g. Walsh et al. 2011). We plan to specifically
investigate the formation of the solar system in a forthcoming

paper.

6.3.3. Long term evolution

As already mentioned above, we focus in this formation model
on the mass growth and orbital evolution of planets in plane-
tary systems during the existence of the gas phase of the proto-
planetary disc. The reason for this limitation is that we mainly
consider the formation of planets with non-negligible gas en-
velopes, whose growth is stopped when the gas disc has disap-
peared. Moreover, a large fraction of planetesimals have either
been ejected or accreted by planets at the end of the protoplan-
etary (gas) disc life, when we stop the computation. We there-
fore expect that planets should not notably grow after this pe-
riod, except as a result of collisions between planets or planetary
embryos.

The disappearance of the protoplanetary disc however has
not only the consequence of stopping the mass growth (in terms
of gas) of planets, but it also means the end of eccentricity
and inclination damping of planets. As a result, the dynamical
state of planetary systems is likely to evolve, leading to a re-
arrangement of the architecture of systems. We performed test
calculations of the evolution of the planetary systems presented
in this paper, and have found that the mass and semi-major axis
of planets are not strongly modified, at least at the population
level. The long-term interaction between planets, however, has
an effect in the increase in planetary eccentricities. Such calcu-
lations will be presented in a forthcoming paper (Pfyffer et al.,
in prep.).

6.3.4. Planetary internal structure

The models presented here are derived closely from the former
models presented in A0S, M12a, M12b, and F13. In particular,
it is assumed, when we compute the internal structure of form-
ing planets, that all accreted planetesimals reach the planetary
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core, depositing at this location their mass and energy. It is how-
ever likely that planetesimals, in particular those of low mass,
are destroyed during their travel towards the planetary centre.
This leads to a modification of the core luminosity, a reduced
core growth, and an increase of the metallicity of the planetary
envelope.

It has been recently shown (Hori & Ikoma 2011) that a
change in the mean opacity and equation of state in the plane-
tary envelope, itself resulting from the destruction of incoming
planetesimals, can heavily modify the planetary critical mass,
and therefore the whole planet formation timescale. The afore-
mentioned study assumed some value of the metallicity in the
planetary envelope, which is not computed as a result of planet
formation. It is, however, more likely that the metallicity of plan-
ets will change with time, as a result of the accretion of plan-
etesimals and as a function of the stability of the envelope with
regards to convection. Indeed, if convection is efficient enough,
the heavy elements deposited by planetesimals are likely to be
equally distributed in the whole convective zone, whereas heavy
elements and grains could settle down in the radiative zone. Such
a self-consistent computation of the planetary internal structure
and its effect on the planetary growth and migration will be stud-
ied in a forthcoming paper.

6.4. Conclusion

We have extended our planet formation model to include the for-
mation of planetary systems. For this, we seeded our simulations
with a number (ranging from 2 to 20) of small seed embryos.
We showed that the presence of several growing embryos can
result in very important modifications in the overall formation
process. In particular, gravitational interactions between these
growing bodies results in significant changes in the final mass,
semi-major axis and orbital parameters, in particular as a result
of the larger orbital migration of planets, which itself results
from planet-planet interactions. As a result, planets belonging
to planetary systems are found to be richer in water in the region
around 1 AU, and a population of low-mass, close-in planets ap-
pears, which is not present when considering the growth of only
one planet.

We also demonstrated that the mass distribution and cumu-
lative distribution of planets do not strongly depend on the num-
ber of planetary embryos considered, in particular for planets
more massive than a few Earth masses. However, the distribu-
tion of period ratios between planets does depend on the num-
ber of planetary embryos, even if the dependance seems to de-
crease with the number of embryos. The distribution of period
ratios also shows that our model predicts too many systems in,
or close to, mean-motion resonance. This could result from ef-
fects that are not taken into account in our model, for example,
from stochastic effects (see e.g. Rein 2012), or from an overesti-
mation of the eccentricity and inclination damping in our model.
Future work will address these issues, as well as the ones pre-
sented in the previous sections.
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