3,730 research outputs found

    Onboard processor technology review

    Get PDF
    The general need and requirements for the onboard embedded processors necessary to control and manipulate data in spacecraft systems are discussed. The current known requirements are reviewed from a user perspective, based on current practices in the spacecraft development process. The current capabilities of available processor technologies are then discussed, and these are projected to the generation of spacecraft computers currently under identified, funded development. An appraisal is provided for the current national developmental effort

    On the Early Evolution of Forming Jovian Planets I: Initial Conditions, Systematics and Qualitative Comparisons to Theory

    Full text link
    (abridged) We analyze the formation and migration of a proto-Jovian companion in a circumstellar disk in 2d, during the period in which the companion makes its transition from `Type I' to `Type II' migration, using a PPM code. Spiral waves are generated by the gravitational torque of the planet on the disk. Their effects are to cause the planet to migrate inward and the disk to form a deep (low surface density) gap. Until a transition to slower Type II migration, the migration rate of the planet is of order 1 AU/103^3 yr, and varies by less than a factor of two with a factor twenty change in planet mass, but depends near linearly on the disk mass. Although the disk is stable to self gravitating perturbations (Toomre Q>5Q>5 everywhere), migration is faster by a factor of two or more when self gravity is suppressed. Migration is equally sensitive to the disk's mass distribution within 1--2 Hill radii of the planet, as demonstrated by our simulations' sensitivity to the planet's assumed gravitational softening parameter. Rapid migration can continue after gap formation. Gaps are typically several AU in width and display the \mplan2/3^{2/3} proportionality predicted by theory. Beginning from an initially unperturbed 0.05\msun disk, planets of mass Mpl>0.3M_{\rm pl}> 0.3\mj can open a gap deep and wide enough to complete the transition to slower \ttwo migration. Lower mass objects continue to migrate rapidly, eventually impacting the inner boundary of our grid. This transition mass is much larger than that predicted as the `Shiva mass' discussed in Ward and Hahn (2000), making the survival of forming planets even more precarious than they would predict.Comment: 39 pages incl 13 figures. High resolution color figures at http://www.maths.ed.ac.uk/~andy/publications.htm

    Formation and long-term evolution of 3D vortices in protoplanetary discs

    Full text link
    In the context of planet formation, anticyclonic vortices have recently received lots of attention for the role they can play in planetesimals formation. Radial migration of intermediate size solids toward the central star may prevent their growth to larger solid grains. On the other hand, vortices can trap the dust and accelerate this growth, counteracting fast radial transport. Multiple effects have been shown to affect this scenario, such as vortex migration or decay. The aim of this paper is to study the formation of vortices by the Rossby wave instability and their long term evolution in a full three dimensional protoplanetary disc. We use a robust numerical scheme combined with adaptive mesh refinement in cylindrical coordinates, allowing to affordably compute long term 3D evolutions. We consider a full disc stratified both radially and vertically that is prone to formation of vortices by the Rossby wave instability. We show that the 3D Rossby vortices grow and survive over hundreds of years without migration. The localized overdensity which initiated the instability and vortex formation survives the growth of the Rossby wave instability for very long times. When the vortices are no longer sustained by the Rossby wave instability, their shape changes toward more elliptical vortices. This allows them to survive shear-driven destruction, but they may be prone to elliptical instability and slow decay. When the conditions for growing Rossby wave-related instabilities are maintained in the disc, large-scale vortices can survive over very long timescales and may be able to concentrate solids.Comment: Accepted for publication in A&

    Device and method for frictionally testing materials for ignitability

    Get PDF
    Test apparatus for determining ignition characteristics of various metal in oxidizer environments simulating operating conditions for materials is invented. The test apparatus has a chamber through which the oxidizing agent flows, and means for mounting a stationary test sample therein, a powered, rotating shaft in the chamber rigidly mounts a second test sample. The shaft is axially movable to bring the samples into frictional engagement and heated to the ignition point. Instrumentation connected to the apparatus provides for observation of temperatures, pressures, loads on and speeds of the rotating shaft, and torques whereby components of stressed oxygen systems can be selected which will avoid accidental fires under working conditions

    Data Mining Atmospheric/Oceanic Parameters in the Design of a Long-Range Nephelometric Forecast Tool

    Get PDF
    The Department of Defense calls for long-range forecasts to aid in the planning of operations. The goal of this research was to explore the feasibility of predicting, one month in advance, the total monthly cloud cover over the country of Afghanistan. In an attempt to reach this goal, the following objectives were achieved: (1) climatological synoptic study of Afghanistan; (2) survey of Real Time Nephanalysis, outgoing longwave radiation (OLR), and surface observational data; (3) examination of teleconnection indices and sea surface temperatures; (4) standard statistical analysis for prediction; and (5) classification tree analysis (CART), In addition, due to current world events, CART analysis was also applied over the country of Iraq (see Appendix C). Data were examined using standard statistical regression techniques, including linear and multiple linear regression, and then CART analysis was used for exploring possible concealed predictive structures. Standard statistics showed a strong negative correlation between monthly average OLR and surface observational total cloud cover from the fall through spring months. However, linear regression revealed very weak relationships between the predictor and predictand variables. As well, CART results contained misclassification rates that exceeded established thresholds for operational use. Further studies using CART for atmospheric science applications should be pursued

    Planet formation models: the interplay with the planetesimal disc

    Full text link
    According to the sequential accretion model, giant planet formation is based first on the formation of a solid core which, when massive enough, can gravitationally bind gas from the nebula to form the envelope. In order to trigger the accretion of gas, the core has to grow up to several Earth masses before the gas component of the protoplanetary disc dissipates. We compute the formation of planets, considering the oligarchic regime for the growth of the solid core. Embryos growing in the disc stir their neighbour planetesimals, exciting their relative velocities, which makes accretion more difficult. We compute the excitation state of planetesimals, as a result of stirring by forming planets, and gas-solid interactions. We find that the formation of giant planets is favoured by the accretion of small planetesimals, as their random velocities are more easily damped by the gas drag of the nebula. Moreover, the capture radius of a protoplanet with a (tiny) envelope is also larger for small planetesimals. However, planets migrate as a result of disc-planet angular momentum exchange, with important consequences for their survival: due to the slow growth of a protoplanet in the oligarchic regime, rapid inward type I migration has important implications on intermediate mass planets that have not started yet their runaway accretion phase of gas. Most of these planets are lost in the central star. Surviving planets have either masses below 10 ME or above several Jupiter masses. To form giant planets before the dissipation of the disc, small planetesimals (~ 0.1 km) have to be the major contributors of the solid accretion process. However, the combination of oligarchic growth and fast inward migration leads to the absence of intermediate mass planets. Other processes must therefore be at work in order to explain the population of extrasolar planets presently known.Comment: Accepted for publication in Astronomy and Astrophysic

    VLA, PHOENIX, and BATSE observations of an X1 flare

    Get PDF
    We present observations of an X1 flare (18 Jul. 1991) detected simultaneously with the Very Large Array (VLA), the PHOENIX Digital Radio Spectrometer and the Burst and Transient Source Experiment (BATSE) aboard the Gamma Ray Observatory (GRO). The VLA was used to produce snapshot maps of the impulsive acceleration in the higher corona several minutes before the onset of the hard x ray burst detected by BATSE. Comparisons with high spectral and temporal observations by PHOENIX reveal a variety of radio bursts at 20 cm, such as type 3 bursts, intermediate drift bursts, and quasi-periodic pulsations during different stages of the X1 flare. From the drift rates of these radio bursts we derive information on local density scale heights, the speed of radio exciters, and the local magnetic field. Radio emission at 90 cm shows a type 4 burst moving outward with a constant velocity of 240 km/s. The described X1 flare is unique in the sense that it appeared at the east limb (N06/E88), providing the most accurate information on the vertical structure of different flare tracers visible in radio wavelengths

    Neutral and Ionized Hydrides in Star-forming Regions -- Observations with Herschel/HIFI

    Get PDF
    The cosmic abundance of hydrides depends critically on high-energy UV, X-ray, and particle irradiation. Here we study hydrides in star-forming regions where irradiation by the young stellar object can be substantial, and density and temperature can be much enhanced over interstellar values. Lines of OH, CH, NH, SH and their ions OH+, CH+, NH+, SH+, H2O+, and H3O+ were observed in star-forming regions by the HIFI spectrometer onboard the Herschel Space Observatory. Molecular column densities are derived from observed ground-state lines, models, or rotational diagrams. We report here on two prototypical high-mass regions, AFGL 2591 and W3 IRS5, and compare them to chemical calculations making assumptions on the high-energy irradiation. A model assuming no ionizing protostellar emission is compared with (i) a model assuming strong protostellar X-ray emission and (ii) a two-dimensional (2D) model including emission in the far UV (FUV, 6 -- 13.6 eV) irradiating the outflow walls that separate the outflowing gas and infalling envelope material. We confirm that the effect of FUV in two dimensional models with enlarged irradiated surfaces is clearly noticeable. A molecule that is very sensitive to FUV irradiation is CH+, enhanced in abundance by more than 5 orders of magnitude. The HIFI observations of CH+ lines agree with the two-dimensional FUV model by Bruderer et al. which computes abundances, non-LTE excitation and line radiative transfer.{Ref 20} It is concluded that CH+ is a good FUV tracer in star-forming regions. The effect of potential X-ray irradiation is not excluded, but cannot be demonstrated by the present data.Comment: 8 pages, 4 figures, Journal of Physical Chemistry in pres
    corecore