19 research outputs found

    Mechanisms of fibrous cap formation in atherosclerosis

    Get PDF
    The fibrous cap is formed by smooth muscle cells that accumulate beneath the plaque endothelium. Cap rupture is the main cause of coronary thrombosis, leading to infarction and sudden cardiac death. Therefore, the qualities of the cap are primary determinants of the clinical outcome of coronary and carotid atherosclerosis. In this mini-review, we discuss current knowledge about the formation of the fibrous cap, including cell recruitment, clonal expansion, and central molecular signaling pathways. We also examine the differences between mouse and human fibrous caps and explore the impact of anti-atherosclerotic therapies on the state of the fibrous cap. We propose that the cap should be understood as a neo-media to substitute for the original media that becomes separated from the surface endothelium during atherogenesis and that embryonic pathways involved in the development of the arteria media contribute to cap formation

    Mechanisms of fibrous cap formation in atherosclerosis.

    Get PDF
    The fibrous cap is formed by smooth muscle cells that accumulate beneath the plaque endothelium. Cap rupture is the main cause of coronary thrombosis, leading to infarction and sudden cardiac death. Therefore, the qualities of the cap are primary determinants of the clinical outcome of coronary and carotid atherosclerosis. In this mini-review, we discuss current knowledge about the formation of the fibrous cap, including cell recruitment, clonal expansion, and central molecular signaling pathways. We also examine the differences between mouse and human fibrous caps and explore the impact of anti-atherosclerotic therapies on the state of the fibrous cap. We propose that the cap should be understood as a neo-media to substitute for the original media that becomes separated from the surface endothelium during atherogenesis and that embryonic pathways involved in the development of the arteria media contribute to cap formation.LA-H is supported by a grant from the Danish Cardiovascular Academy (PD2Y-2022003-DCA), JA-J by a grant from the Aarhus University Research Foundation (Starting Grant, AUFF-E-201 9-7- 23) and JB by grants from the Novo Nordisk Foundation (NNF17OC0030688), Ministerio de Ciencia e Innovación with cofunding from the European Regional Development Fund (PID2019-108568RB-I00), and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 866240). The Centro Nacional de Investigaciones Cardiovasculares (CNIC) is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MICIN) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (grant CEX2020- 001041-S funded by MICIN/AEI/10.13039/501100011033).S

    Semaglutide treatment attenuates vessel remodelling in ApoE-/- mice following vascular injury and blood flow perturbation.

    Get PDF
    BACKGROUND AND AIMS Randomized clinical studies have shown a reduction in cardiovascular outcomes with glucagon-like peptide 1 receptor agonist (GLP-1RA) treatment with the hypothesized mechanisms being an underlying effect on atherosclerosis. Here, we aimed to assess the pharmacological effects of semaglutide in an atheroprone murine model that recapitulates central mechanisms related to vascular smooth muscle cell (VSMC) phenotypic switching and endothelial dysfunction known to operate within the atherosclerotic plaque. METHODS In study A, we employed an electrical current to the carotid artery in ApoE-/- mice to induce severe VSMC injury and death, after which the arteries were allowed to heal for 4 weeks. In study B, a constrictive cuff was added for 6 h at the site of the healed segment to induce a disturbance in blood flow. RESULTS Compared to vehicle, semaglutide treatment reduced the intimal and medial area by ∼66% (p = 0.007) and ∼11% (p = 0.0002), respectively. Following cuff placement, expression of the pro-inflammatory marker osteopontin and macrophage marker Mac-2 was reduced (p < 0.05) in the semaglutide-treated group compared to vehicle. GLP-1R were not expressed in murine carotid artery and human coronary vessels with and without atherosclerotic plaques, and semaglutide treatment did not affect proliferation of cultured primary human VSMCs. CONCLUSIONS Semaglutide treatment reduced vessel remodelling following electrical injury and blood flow perturbation in an atheroprone mouse model. This effect appears to be driven by anti-inflammatory and -proliferative mechanisms independent of GLP-1 receptor-mediated signalling in the resident vascular cells. This mechanism of action may be important for cardiovascular protection.This study was supported by a grant from the LifePharm Centre of In Vivo Pharmacology.S

    Inducing Persistent Flow Disturbances Accelerates Atherogenesis and Promotes Thin Cap Fibroatheroma Development in \u3ci\u3eD374Y\u3c/i\u3e-PCSK9 Hypercholesterolemic Minipigs

    Get PDF
    Background—Although disturbed flow is thought to play a central role in the development of advanced coronary atherosclerotic plaques, no causal relationship has been established. We evaluated whether inducing disturbed flow would cause the development of advanced coronary plaques, including thin cap fibroatheroma (TCFA). Methods and Results—D374Y-PCSK9 hypercholesterolemic minipigs (N=5) were instrumented with an intracoronary shear-modifying stent (SMS). Frequency-domain optical coherence tomography was obtained at baseline, immediately post-stent, 19, and 34 weeks and used to compute shear stress metrics of disturbed flow. At 34 weeks, plaque type was assessed within serially-collected histological sections and co-registered to the distribution of each shear metric. The SMS caused a flow-limiting stenosis and blood flow exiting the SMS caused regions of increased shear stress on the outer curvature and large regions of low and multidirectional shear stress on the inner curvature of the vessel. As a result, plaque burden was ~3-fold higher downstream of the SMS compared to both upstream of the SMS and in the control artery (pppp\u3c0.005). Conclusions—These data support a causal role for lowered and multidirectional shear stress in the initiation of advanced coronary atherosclerotic plaques. Persistently lowered shear stress appears to be the principal flow disturbance needed for the formation of TCFA

    Histone deacetylase 9 promotes endothelial to mesenchymal transition and an unfavorable atherosclerotic plaque phenotype

    Get PDF
    Endothelial-mesenchymal transition (EndMT) is associated with various cardiovascular diseases and in particular with atherosclerosis and plaque instability. However, the molecular pathways that govern EndMT are poorly defined. Specifically, the role of epigenetic factors and histone deacetylases (HDACs) in controlling EndMT and the atherosclerotic plaque phenotype remains unclear. Here, we identified histone deacetylation, specifically that mediated by HDAC9 (a class IIa HDAC), as playing an important role in both EndMT and atherosclerosis. Using in vitro models, we found class IIa HDAC inhibition sustained the expression of endothelial proteins and mitigated the increase in mesenchymal proteins, effectively blocking EndMT. Similarly, ex vivo genetic knockout of Hdac9 in endothelial cells prevented EndMT and preserved a more endothelial-like phenotype. In vivo, atherosclerosis-prone mice with endothelial-specific Hdac9 knockout showed reduced EndMT and significantly reduced plaque area. Furthermore, these mice displayed a more favorable plaque phenotype, with reduced plaque lipid content and increased fibrous cap thickness. Together, these findings indicate that HDAC9 contributes to vascular pathology by promoting EndMT. Our study provides evidence for a pathological link among EndMT, HDAC9, and atherosclerosis and suggests that targeting of HDAC9 may be beneficial for plaque stabilization or slowing the progression of atherosclerotic disease

    Conditional deletion of Ccl2 in smooth muscle cells does not reduce early atherosclerosis in mice

    No full text
    Background and aims: C–C motif chemokine ligand 2 (CCL2) is a pro-inflammatory chemokine important for monocyte recruitment to the arterial wall and atherosclerotic plaques. Global knockout of Ccl2 reduces plaque formation and macrophage content in mice, but the importance of different plaque cell types in mediating this effect has not been resolved. Smooth muscle cells (SMCs) can adopt a potentially pro-inflammatory function with expression of CCL2. The present study aimed to test the hypothesis that SMC-secreted CCL2 is involved in early atherogenesis in mice. Methods: SMC-restricted Cre recombinase was activated at 6 weeks of age in mice with homozygous floxed or wildtype Ccl2 alleles. Separate experiments in mice lacking the Cre recombinase transgene were conducted to control for genetic background effects. Hypercholesterolemia and atherosclerosis were induced by a tail vein injection of recombinant adeno-associated virus (rAAV) encoding proprotein convertase subtilisin/kexin type 9 (PCSK9) and a high-fat diet for 12 weeks. Results: Unexpectedly, mice with SMC-specific Ccl2 deletion developed higher levels of plasma cholesterol and larger atherosclerotic plaques with more macrophages compared with wild-type littermates. When total cholesterol levels were incorporated into the statistical analysis, none of the effects on plaque development between groups remained significant. Importantly, changes in plasma cholesterol and atherosclerosis remained in mice lacking Cre recombinase indicating that they were not caused by SMC-specific CCL2 deletion but by effects of the floxed allele or passenger genes. Conclusions: SMC-specific deficiency of Ccl2 does not significantly affect early plaque development in hypercholesterolemic mice

    Topography of immune cell infiltration in different stages of coronary atherosclerosis revealed by multiplex immunohistochemistry

    Get PDF
    Background: Aim of this study was to investigate immune cells and subsets in different stages of human coronary artery disease with a novel multiplex immunohistochemistry (mIHC) technique. Methods: Human left anterior descending coronary artery specimens were analyzed: eccentric intimal thickening (N = 11), pathological intimal thickening (N = 10), fibroatheroma (N = 9), and fibrous plaque (N = 9). Eccentric intimal thickening was considered normal, and pathological intimal thickening, fibroatheroma, and fibrous plaque were considered diseased coronary arteries. Two mIHC panels, consisting of six and five primary antibodies, autofluoresence, and DAPI, were used to detect adaptive and innate immune cells. Via semi-automated analysis, (sub)types of immune cells in whole plaques and specific plaque regions were quantified. Results: Increased numbers of CD3+ T cells (P < 0.001), CD20+ B cells (P = 0.013), CD68+ macrophages (P = 0.003), CD15+ neutrophils (P = 0.017), and CD31+ endothelial cells (P = 0.024) were identified in intimas of diseased coronary arteries compared to normal. Subset analyses of T cells and macrophages showed that diseased coronary arteries contained an abundance of CD3+CD8- non-cytotoxic T cells and CD68+CD206- non-M2-like macrophages. Proportions of CD3+CD45RO+ memory T cells were similar to normal coronary arteries. Among pathological intimal thickening, fibroatheroma, and fibrous plaque, all immune cell numbers and subsets were similar. Conclusions: The type of immune response does not differ substantially between different stages of plaque development and may provide context for mechanistic research into immune cell function in atherosclerosis. We provide the first comprehensive map of immune cell subtypes across plaque types in coronary arteries demonstrating the potential of mIHC for vascular research

    Vimentin deficiency in macrophages induces increased oxidative stress and vascular inflammation but attenuates atherosclerosis in mice

    Get PDF
    Abstract The aim was to clarify the role of vimentin, an intermediate filament protein abundantly expressed in activated macrophages and foam cells, in macrophages during atherogenesis. Global gene expression, lipid uptake, ROS, and inflammation were analyzed in bone-marrow derived macrophages from vimentin-deficient (Vim −/−) and wild-type (Vim +/+) mice. Atherosclerosis was induced in Ldlr −/− mice transplanted with Vim −/− and Vim +/+ bone marrow, and in Vim −/− and Vim +/+ mice injected with a PCSK9 gain-of-function virus. The mice were fed an atherogenic diet for 12–15 weeks. We observed impaired uptake of native LDL but increased uptake of oxLDL in Vim −/− macrophages. FACS analysis revealed increased surface expression of the scavenger receptor CD36 on Vim −/− macrophages. Vim −/− macrophages also displayed increased markers of oxidative stress, activity of the transcription factor NF-κB, secretion of proinflammatory cytokines and GLUT1-mediated glucose uptake. Vim −/− mice displayed decreased atherogenesis despite increased vascular inflammation and increased CD36 expression on macrophages in two mouse models of atherosclerosis. We demonstrate that vimentin has a strong suppressive effect on oxidative stress and that Vim −/− mice display increased vascular inflammation with increased CD36 expression on macrophages despite decreased subendothelial lipid accumulation. Thus, vimentin has a key role in regulating inflammation in macrophages during atherogenesis
    corecore