41 research outputs found
Recommended from our members
Coupler Design for the LCLS Injector S-Band Structures
The LCLS injector is required to provide a 1-nC, 10-ps bunch with a normalized rms transverse projected emittance of less than 1 micron. The LCLS beam is generated and accelerated in a 1.6-cell S-band RF gun at 120 MV/m up to 6 MeV. The gun is followed by two SLAC 3-m S-band accelerator structures to further accelerate the beam to 135 MeV which moves the beam out of the space-charge dominated regime. In the SLAC S-band structures, the RF power feed is through a single coupling-hole (single-feed coupler) which results in a field asymmetry. The time dependent multipole fields in the coupler induce a transverse kick along the bunch and cause the emittance to increase above the LCLS specification. To meet the stringent emittance requirements for the injector, the single-feed couplers will be replaced by a dual-feed racetrack design to minimize the multipole field effects. We will present detailed studies of the multipole fields in the SLAC linac RF coupler and the improvements with the dual-feed ractrack design using the parallel finite element S-parameter solver S3P
New point mutation in Golga3 causes multiple defects in spermatogenesis.
Mice with repro27 exhibit fully penetrant male-specific infertility associated with a nonsense mutation in the golgin subfamily A member 3 gene (Golga3). GOLGA3 is a Golgi complex-associated protein implicated in protein trafficking, apoptosis, positioning of the Golgi and spermatogenesis. In repro27 mutant mice, a point mutation in exon 18 of the Golga3 gene that inserts a pre-mature termination codon leads to an absence of GOLGA3 protein expression. GOLGA3 protein was undetectable in the brain, heart and liver in both mutant and control mice. Although spermatogenesis in Golga3(repro27) mutant mice appears to initiate normally, development is disrupted in late meiosis during the first wave of spermatogenesis, leading to significant germ cell loss between 15 and 18 days post-partum (dpp). Terminal Deoxynucleotidyl Transferase dUTP-mediated Nick End Labeling analysis showed elevated DNA fragmentation in meiotic germ cells by 12 dpp, suggesting apoptosis as a mechanism of germ cell loss. The few surviving post-meiotic round spermatids exhibited abnormal spermiogenesis with defects in acrosome formation, head and tail development and extensive vacuolization in the seminiferous epithelium. Analysis of epididymal spermatozoa showed significantly low sperm concentration and motility and in vitro fertilization with mutant spermatozoa was unsuccessful. Golga3(repro27) mice lack GOLGA3 protein and thus provide an in vivo tool to aid in deciphering the role of GOLGA3 in Golgi complex positioning, cargo trafficking and apoptosis signalling in male germ cells. Andrology 2013 May; 1(3):440-50
The Linac Coherent Light Source Photo-Injector Overview and Some Design Details”, EPAC 04
The Linac Coherent Light Source (LCLS) is a SASE free electron laser using the last 1/3 of the SLAC two mile linac to produce 1.5 to 15 angstrom x-rays in a 100 meter long undulator for use in a variety of x-ray science experiments. In order to satisfy the demanding electron beam requirements, a new 135 MeV photo-injector will be built in an existing, off-axis vault at the 2/3 point of the main linac. The injector accelerator consists of a BNL/SLAC/UCLA 1.6 cell S-band gun followed by two 3-meter long SLAC accelerator sections. The 6MeV beam from the gun is matched into the first accelerator section and accelerated to 135 MeV before injection onto the main linac axis with a 35 degree bend. Several modifications to the rf gun, linac and beamline as well as the inclusion of several diagnostics have been incorporated into the injector design to achieve the required 1.2 micron projected emittance at a charge of 1 nC. In addition, an inverse free electron laser, the laser heater, will be used to increase the uncorrelated energy spread to suppress coherent synchrotron radiation and longitudinal space charge instabilities in the main accelerator and bunch compressors. The configuration and function of the major injector components will be described