4,131 research outputs found

    Development and Analysis of the Automated Object Reentry Survival Analysis Tool Parametric Study Wrapper

    Get PDF
    The NASA Orbital Debris Program Office (ODPO) studies all aspects of spacecraft end-of-life and orbital debris measurement, modeling, and mitigation. The reentry safety group within the ODPO uses the Object Reentry Survival Analysis Tool (ORSAT) to calculate the casualty risk due to reentry of spacecraft and other types of orbital debris. ORSAT models spacecraft as a collection of fragments that break apart from the parent object at a pre-defined breakup altitude. It then calculates the trajectory and aero-heating of these fragments to determine which fragments are completely destroyed and which survive to the ground and pose a risk to human population. Because of the historically high computational cost of these calculations, many simplifying assumptions have been made in the traditional calculation and analysis process used by the ODPO, some of which have been shown by recent research by the ODPO and others to be incorrect. Improvements to the ORSAT code and advancements in computer technology have vastly decreased the programs processing time, and have allowed the ODPO to develop a capability for large-scale parametric studies and Monte Carlo reentry simulations that can aid in both the initial spacecraft design and provide more detailed and accurate risk analysis to spacecraft operators

    Measurement of trapped proton fluences in main stack of P0006 experiment

    Get PDF
    We have measured directional distribution and Eastward directed mission fluence of trapped protons at two different energies with plastic nuclear track detectors (CR-39 with DOP) in the main stack of the P0006 experiment on LDEF. Results show arriving directions of trapped protons have very high anisotropy with most protons arriving from the West direction. Selecting these particles we have determined the mission fluence of Eastward directed trapped protons. We found experimental fluences are slightly higher than results of the model calculations of Armstrong and Colborn

    Information-theoretic significance of the Wigner distribution

    Full text link
    A coarse grained Wigner distribution p_{W}(x,u) obeying positivity derives out of information-theoretic considerations. Let p(x,u) be the unknown joint PDF (probability density function) on position- and momentum fluctuations x,u for a pure state particle. Suppose that the phase part Psi(x,z) of its Fourier transform F.T.[p(x,u)]=|Z(x,z)|exp[iPsi(x,z)] is constructed as a hologram. (Such a hologram is often used in heterodyne interferometry.) Consider a particle randomly illuminating this phase hologram. Let its two position coordinates be measured. Require that the measurements contain an extreme amount of Fisher information about true position, through variation of the phase function Psi(x,z). The extremum solution gives an output PDF p(x,u) that is the convolution of the Wigner p_{W}(x,u) with an instrument function defining uncertainty in either position x or momentum u. The convolution arises naturally out of the approach, and is one-dimensional, in comparison with the two-dimensional convolutions usually proposed for coarse graining purposes. The output obeys positivity, as required of a PDF, if the one-dimensional instrument function is sufficiently wide. The result holds for a large class of systems: those whose amplitudes a(x) are the same at their boundaries (Examples: states a(x) with positive parity; with periodic boundary conditions; free particle trapped in a box).Comment: pdf version has 16 pages. No figures. Accepted for publ. in PR

    On Breaking Cosmic Degeneracy

    Get PDF
    It has been argued that the power spectrum of the anisotropies in the Cosmic Microwave Background (CMB) may be effectively degenerate, namely that the observable spectrum does not determine a unique set of cosmological parameters. We describe the physical origin of this degeneracy and show that at small angular scales it is broken by gravitational lensing: effectively degenerate spectra become distinguishable at l ~ 3000 because lensing causes their damping tails to fall at different rates with increasing l. This effect also helps in distinguishing nearly degenerate power spectra such as those of mixed dark matter models. Forthcoming interferometer experiments should provide the means of measuringotherwise degenerate parameters at the 5-25% level.Comment: 7 pages, LaTeX, two figures, to be published in ApJ Letter

    The PANChSHEEEL Formative report: An integrated health, education, engineering and environmental (HEEE) intervention to optimise infant feeding practices through schools and Anganwadi networks in India

    Get PDF
    The Participatory Approach for Nutrition in Children: Strengthening Health Education Engineering and Environment Linkages (PANChSHEEEL) project was an interdisciplinary study, designed to explore HEEE (Health, Education, Engineering and Environment) factors that influence Infant and Young Child Feeding (IYCF) practices and nutrition in India. The study aimed to develop a socio-culturally appropriate, tailored, innovative and integrated cross-sector HEEE intervention package to address malnutrition by supporting optimal Infant and Young Child feeding (IYCF) practices for children in rural India focussing primarily on the period of 6-24 months. The project established an international collaboration between University College London (UCL), Save the Children, Jawaharlal Nehru University (JNU), Delhi and Indian Institute of Technology (IIT), Delhi in order to develop an effective intervention at a key stage of an infant’s cognitive and physical development. A multi-stakeholder panel was developed, with members of the local village community, health workers, school teachers, Angadwadi workers (midwives), community researchers and local community champions becoming key actors for bringing about meaningful change. This holistic, multi-sector and bottom-up approach facilitated a more organic intervention to address “what” and “how” infants were being fed. This report focuses on the methodology and findings of the project

    Prevalence of face recognition deficits in middle childhood

    Get PDF
    Approximately 2-2.5% of the adult population is believed to show severe difficulties with face recognition, in the absence of any neurological injury – a condition known as developmental prosopagnosia (DP). However, to date no research has attempted to estimate the prevalence of face recognition deficits in children, possibly because there are very few child-friendly, well-validated tests of face recognition. In the current study, we examined face and object recognition in a group of primary school children (aged 5-11 years), to establish whether our tests were suitable for children; and to provide an estimate of face recognition difficulties in children. In Experiment 1 (n = 184), children completed a pre-existing test of child face memory, the CFMT-K, and a bicycle test with the same format. In Experiment 2 (n = 413), children completed three-alternative forced choice matching tasks with faces and bicycles. All tests showed good psychometric properties. The face and bicycle tests were well-matched for difficulty and showed a similar developmental trajectory. Neither the memory nor matching tests were suitable to detect impairments in the youngest groups of children, but both tests appear suitable to screen for face recognition problems in middle childhood. In the current sample, 1.2-5.2% of children showed difficulties with face recognition; 1.2-4% showed face-specific difficulties – that is, poor face recognition with typical object recognition abilities. This is somewhat higher than previous adult estimates: it is possible that face matching tests overestimate the prevalence of face recognition difficulties in children; alternatively, some children may “outgrow” face recognition difficulties

    Isotopic evidence for the diversity of late Quaternary loess in Nebraska: Glaciogenic and nonglaciogenic sources

    Get PDF
    Pb isotope compositions of detrital K-feldspars and U-Pb ages of detrital zircons are used as indicators for determining the sources of Peoria Loess deposited during the last glacial period (late Wisconsin, ca. 25–14 ka) in Nebraska and western Iowa. Our new data indicate that only loess adjacent to the Platte River has Pb isotopic characteristics suggesting derivation from this river. Most Peoria Loess in central Nebraska (up to 20 m thick) is non-glaciogenic, on the basis of Pb isotope ratios in K-feldspars and the presence of 34-Ma detrital zircons. These isotopic characteristics suggest derivation primarily from the Oligocene White River Group in southern South Dakota, western Nebraska, southeastern Wyoming, and northeastern Colorado. The occurrence of 10–25 Ma detrital zircons suggests additional minor contributions of silt from the Oligocene-Miocene Arikaree Group and Miocene Ogallala Group

    Isotopic evidence for the diversity of late Quaternary loess in Nebraska: Glaciogenic and nonglaciogenic sources

    Get PDF
    Pb isotope compositions of detrital K-feldspars and U-Pb ages of detrital zircons are used as indicators for determining the sources of Peoria Loess deposited during the last glacial period (late Wisconsin, ca. 25–14 ka) in Nebraska and western Iowa. Our new data indicate that only loess adjacent to the Platte River has Pb isotopic characteristics suggesting derivation from this river. Most Peoria Loess in central Nebraska (up to 20 m thick) is non-glaciogenic, on the basis of Pb isotope ratios in K-feldspars and the presence of 34-Ma detrital zircons. These isotopic characteristics suggest derivation primarily from the Oligocene White River Group in southern South Dakota, western Nebraska, southeastern Wyoming, and northeastern Colorado. The occurrence of 10–25 Ma detrital zircons suggests additional minor contributions of silt from the Oligocene-Miocene Arikaree Group and Miocene Ogallala Group

    On coalgebras with internal moves

    Full text link
    In the first part of the paper we recall the coalgebraic approach to handling the so-called invisible transitions that appear in different state-based systems semantics. We claim that these transitions are always part of the unit of a certain monad. Hence, coalgebras with internal moves are exactly coalgebras over a monadic type. The rest of the paper is devoted to supporting our claim by studying two important behavioural equivalences for state-based systems with internal moves, namely: weak bisimulation and trace semantics. We continue our research on weak bisimulations for coalgebras over order enriched monads. The key notions used in this paper and proposed by us in our previous work are the notions of an order saturation monad and a saturator. A saturator operator can be intuitively understood as a reflexive, transitive closure operator. There are two approaches towards defining saturators for coalgebras with internal moves. Here, we give necessary conditions for them to yield the same notion of weak bisimulation. Finally, we propose a definition of trace semantics for coalgebras with silent moves via a uniform fixed point operator. We compare strong and weak bisimilation together with trace semantics for coalgebras with internal steps.Comment: Article: 23 pages, Appendix: 3 page
    • …
    corecore