210 research outputs found

    Mars Sample Handling and Requirements Panel (MSHARP)

    Get PDF
    In anticipation of the return of samples from Mars toward the end of the first decade of the next century, NASA's Office of Space Sciences chartered a panel to examine how Mars samples should be handled. The panel was to make recommendations in three areas: (1) sample collection and transport back to Earth; (2) certification of the samples as nonhazardous; and (3) sample receiving, curation, and distribution. This report summarizes the findings of that panel. The samples should be treated as hazardous until proven otherwise. They are to be sealed within a canister on Mars, and the canister is not to be opened until within a Biosafety Hazard Level 4 (BSL-4) containment facility here on Earth. This facility must also meet or exceed the cleanliness requirements of the Johnson Space Center (JSC) facility for curation of extraterrestrial materials. A containment facility meeting both these requirements does not yet exist. Hazard assessment and life detection experiments are to be done at the containment facility, while geochemical characterization is being performed on a sterilized subset of the samples released to the science community. When and if the samples are proven harmless, they are to be transferred to a curation facility, such as that at JSC

    Identifying the genetic basis of antigenic change in influenza A(H1N1)

    Get PDF
    Determining phenotype from genetic data is a fundamental challenge. Influenza A viruses undergo rapid antigenic drift and identification of emerging antigenic variants is critical to the vaccine selection process. Using former seasonal influenza A(H1N1) viruses, hemagglutinin sequence and corresponding antigenic data were analyzed in combination with 3-D structural information. We attributed variation in hemagglutination inhibition to individual amino acid substitutions and quantified their antigenic impact, validating a subset experimentally using reverse genetics. Substitutions identified as low-impact were shown to be a critical component of influenza antigenic evolution and by including these, as well as the high-impact substitutions often focused on, the accuracy of predicting antigenic phenotypes of emerging viruses from genotype was doubled. The ability to quantify the phenotypic impact of specific amino acid substitutions should help refine techniques that predict the fitness and evolutionary success of variant viruses, leading to stronger theoretical foundations for selection of candidate vaccine viruses

    Microbiota‐Dependent Metabolite Trimethylamine N‐Oxide and Coronary Artery Calcium in the Coronary Artery Risk Development in Young Adults Study (CARDIA)

    Get PDF
    BACKGROUND: Clinical studies implicate trimethylamine N-oxide (TMAO; a gut microbiota-dependent nutrient metabolite) in cardiovascular disease risk. There is a lack of population-based data on the role of TMAO in advancing early atherosclerotic disease. We tested the prospective associations between TMAO and coronary artery calcium (CAC) and carotid intima-media thickness (cIMT). METHODS AND RESULTS: Data were from the Coronary Artery Risk Development in Young Adults Study (CARDIA), a biracial cohort of US adults recruited in 1985-1986 (n=5115). We randomly sampled 817 participants (aged 33-55 years) who attended examinations in 2000-2001, 2005-2006, and 2010-2011, at which CAC was measured by computed tomography and cIMT (2005-2006) by ultrasound. TMAO was quantified using liquid chromotography mass spectrometry on plasma collected in 2000-2001. Outcomes were incident CAC, defined as Agatston units=0 in 2000-2001 and >0 over 10-year follow-up, CAC progression (any increase over 10-year follow-up), and continuous cIMT. Over the study period, 25% (n=184) of those free of CAC in 2000-2001 (n=746) developed detectable CAC. In 2000-2001, median (interquartile range) TMAO was 2.6 (1.8-4.2) μmol/L. In multivariable-adjusted models, TMAO was not associated with 10-year CAC incidence (rate ratio=1.03; 95% CI: 0.71-1.52) or CAC progression (0.97; 0.68-1.38) in Poisson regression, or cIMT (beta coefficient: -0.009; -0.03 to 0.01) in linear regression, comparing the fourth to the first quartiles of TMAO. CONCLUSIONS: In this population-based study, TMAO was not associated with measures of atherosclerosis: CAC incidence, CAC progression, or cIMT. These data indicate that TMAO may not contribute significantly to advancing early atherosclerotic disease risk among healthy early-middle-aged adults

    Non-Random Spatial Distribution of Impacts in the Stardust Cometary Collector

    Get PDF
    In January 2004, the Stardust spacecraft flew through the coma of comet P81/Wild2 at a relative speed of 6.1 km/sec. Cometary dust was collected at in a 0.1 sq m collector consisting of aerogel tiles and aluminum foils. Two years later, the samples successfully returned to earth and were recovered. We report the discovery that impacts in the Stardust cometary collector are not distributed randomly in the collecting media, but appear to be clustered on scales smaller than approx.10 cm. We also report the discovery of at least two populations of oblique tracks. We evaluated several hypotheses that could explain the observations. No hypothesis was consistent with all the observations, but the preponderance of evidence points toward at least one impact on the central Whipple shield of the spacecraft as the origin of both clustering and low-angle oblique tracks. High-angle oblique tracks unambiguously originate from a noncometary impact on the spacecraft bus just forward of the collector. Here we summarize the observations, and review the evidence for and against three scenarios that we have considered for explaining the impact clustering found on the Stardust aerogel and foil collectors

    Genetic determinants of receptor-binding preference and zoonotic potential of H9N2 avian influenza viruses

    Get PDF
    Receptor recognition and binding is the first step of viral infection and a key determinant of host specificity. The inability of avian influenza viruses to effectively bind human-like sialylated receptors is a major impediment to their efficient transmission in humans and pandemic capacity. Influenza H9N2 viruses are endemic in poultry across Asia and parts of Africa where they occasionally infect humans and are therefore considered viruses with zoonotic potential. We previously described H9N2 viruses, including several isolated from human zoonotic cases, showing a preference for human-like receptors. Here we take a mutagenesis approach, making viruses with single or multiple substitutions in H9 haemagglutinin and test binding to avian and human receptor analogues using biolayer interferometry. We determine the genetic basis of preferences for alternative avian receptors and for human-like receptors, describing amino acid motifs at positions 190, 226 and 227 that play a major role in determining receptor specificity, and several other residues such as 159, 188, 193, 196, 198 and 225 that play a smaller role. Furthermore, we show changes at residues 135, 137, 147, 157, 158, 184, 188, and 192 can also modulate virus receptor avidity and that substitutions that increased or decreased the net positive charge around the haemagglutinin receptor-binding site show increases and decreases in avidity, respectively. The motifs we identify as increasing preference for the human-receptor will help guide future H9N2 surveillance efforts and facilitate our understanding of the emergence of influenza viruses with increased zoonotic potential

    The balloon-borne large-aperture submillimeter telescope for polarimetry: BLAST-Pol

    Full text link
    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLAST-Pol) is a suborbital mapping experiment designed to study the role played by magnetic fields in the star formation process. BLAST-Pol is the reconstructed BLAST telescope, with the addition of linear polarization capability. Using a 1.8 m Cassegrain telescope, BLAST-Pol images the sky onto a focal plane that consists of 280 bolometric detectors in three arrays, observing simultaneously at 250, 350, and 500 um. The diffraction-limited optical system provides a resolution of 30'' at 250 um. The polarimeter consists of photolithographic polarizing grids mounted in front of each bolometer/detector array. A rotating 4 K achromatic half-wave plate provides additional polarization modulation. With its unprecedented mapping speed and resolution, BLAST-Pol will produce three-color polarization maps for a large number of molecular clouds. The instrument provides a much needed bridge in spatial coverage between larger-scale, coarse resolution surveys and narrow field of view, and high resolution observations of substructure within molecular cloud cores. The first science flight will be from McMurdo Station, Antarctica in December 2010.Comment: 14 pages, 9 figures Submitted to SPIE Astronomical Telescopes and Instrumentation Conference 201

    A cryogenic rotation stage with a large clear aperture for the half-wave plates in the Spider instrument

    Get PDF
    We describe the cryogenic half-wave plate rotation mechanisms built for and used in Spider, a polarization-sensitive balloon-borne telescope array that observed the Cosmic Microwave Background at 95 GHz and 150 GHz during a stratospheric balloon flight from Antarctica in January 2015. The mechanisms operate at liquid helium temperature in flight. A three-point contact design keeps the mechanical bearings relatively small but allows for a large (305 mm) diameter clear aperture. A worm gear driven by a cryogenic stepper motor allows for precise positioning and prevents undesired rotation when the motors are depowered. A custom-built optical encoder system monitors the bearing angle to an absolute accuracy of +/- 0.1 degrees. The system performed well in Spider during its successful 16 day flight.Comment: 11 pages, 7 figures, Published in Review of Scientific Instruments. v2 includes reviewer changes and longer literature revie

    Pointing control for the SPIDER balloon-borne telescope

    Full text link
    We present the technology and control methods developed for the pointing system of the SPIDER experiment. SPIDER is a balloon-borne polarimeter designed to detect the imprint of primordial gravitational waves in the polarization of the Cosmic Microwave Background radiation. We describe the two main components of the telescope's azimuth drive: the reaction wheel and the motorized pivot. A 13 kHz PI control loop runs on a digital signal processor, with feedback from fibre optic rate gyroscopes. This system can control azimuthal speed with < 0.02 deg/s RMS error. To control elevation, SPIDER uses stepper-motor-driven linear actuators to rotate the cryostat, which houses the optical instruments, relative to the outer frame. With the velocity in each axis controlled in this way, higher-level control loops on the onboard flight computers can implement the pointing and scanning observation modes required for the experiment. We have accomplished the non-trivial task of scanning a 5000 lb payload sinusoidally in azimuth at a peak acceleration of 0.8 deg/s2^2, and a peak speed of 6 deg/s. We can do so while reliably achieving sub-arcminute pointing control accuracy.Comment: 20 pages, 12 figures, Presented at SPIE Ground-based and Airborne Telescopes V, June 23, 2014. To be published in Proceedings of SPIE Volume 914

    Influenza hemagglutinin membrane anchor

    Get PDF
    Viruses with membranes fuse them with cellular membranes, to transfer their genomes into cells at the beginning of infection. For Influenza virus, the membrane glycoprotein involved in fusion is the hemagglutinin (HA), the 3D structure of which is known from X-ray crystallographic studies. The soluble ectodomain fragments used in these studies lacked the “membrane anchor” portion of the molecule. Since this region has a role in membrane fusion, we have determined its structure by analyzing the intact, full-length molecule in a detergent micelle, using cryo-EM. We have also compared the structures of full-length HA−detergent micelles with full-length HA−Fab complex detergent micelles, to describe an infectivity-neutralizing monoclonal Fab that binds near the ectodomain membrane anchor junction. We determine a high- resolution HA structure which compares favorably in detail with the structure of the ectodomain seen by X-ray crystallography; we detect, clearly, all five carbohydrate side chains of HA; and we find that the ectodomain is joined to the membrane anchor by flexible, eight-residue-long, linkers. The linkers extend into the detergent micelle to join a central triple-helical structure that is a major component of the membrane anchor

    Role of the B Allele of Influenza A Virus Segment 8 in Setting Mammalian Host Range and Pathogenicity.

    Get PDF
    UNLABELLED: Two alleles of segment 8 (NS) circulate in nonchiropteran influenza A viruses. The A allele is found in avian and mammalian viruses, but the B allele is viewed as being almost exclusively found in avian viruses. This might reflect the fact that one or both of its encoded proteins (NS1 and NEP) are maladapted for replication in mammalian hosts. To test this, a number of clade A and B avian virus-derived NS segments were introduced into human H1N1 and H3N2 viruses. In no case was the peak virus titer substantially reduced following infection of various mammalian cell types. Exemplar reassortant viruses also replicated to similar titers in mice, although mice infected with viruses with the avian virus-derived segment 8s had reduced weight loss compared to that achieved in mice infected with the A/Puerto Rico/8/1934 (H1N1) parent. In vitro, the viruses coped similarly with type I interferons. Temporal proteomics analysis of cellular responses to infection showed that the avian virus-derived NS segments provoked lower levels of expression of interferon-stimulated genes in cells than wild type-derived NS segments. Thus, neither the A nor the B allele of avian virus-derived NS segments necessarily attenuates virus replication in a mammalian host, although the alleles can attenuate disease. Phylogenetic analyses identified 32 independent incursions of an avian virus-derived A allele into mammals, whereas 6 introductions of a B allele were identified. However, A-allele isolates from birds outnumbered B-allele isolates, and the relative rates of Aves-to-Mammalia transmission were not significantly different. We conclude that while the introduction of an avian virus segment 8 into mammals is a relatively rare event, the dogma of the B allele being especially restricted is misleading, with implications in the assessment of the pandemic potential of avian influenza viruses. IMPORTANCE: Influenza A virus (IAV) can adapt to poultry and mammalian species, inflicting a great socioeconomic burden on farming and health care sectors. Host adaptation likely involves multiple viral factors. Here, we investigated the role of IAV segment 8. Segment 8 has evolved into two distinct clades: the A and B alleles. The B-allele genes have previously been suggested to be restricted to avian virus species. We introduced a selection of avian virus A- and B-allele segment 8s into human H1N1 and H3N2 virus backgrounds and found that these reassortant viruses were fully competent in mammalian host systems. We also analyzed the currently available public data on the segment 8 gene distribution and found surprisingly little evidence for specific avian host restriction of the B-clade segment. We conclude that B-allele segment 8 genes are, in fact, capable of supporting infection in mammals and that they should be considered during the assessment of the pandemic risk of zoonotic influenza A viruses.Wellcome Trust (Grant ID: 108070/Z/15/Z), Medical Research Council (Grant ID: MR/K000276/1), Biotechnology and Biological Sciences Research Council (Grant IDs: BB/J004324/1, BB/J01446X/1), Division of Intramural Research National Institute of Allergy and Infectious Diseases, University Of Edinburgh (Chancellor’s Fellowship)This is the final version of the article. It first appeared from the American Society for Microbiology via http://dx.doi.org/10.1128/JVI.01205-1
    corecore