45 research outputs found

    The Topographically Asymmetrical Alaska Range: Multiple Tectonic Drivers Through Space And Time

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2011The topographically segmented, ~700 km long Alaska Range evolved over the last ~50 Ma in response to both far-field driving mechanisms and near-field boundary conditions. The eastern Alaska Range follows the curve of the Denali Fault strike-slip system, forming a large arc of high topography across southern Alaska. The majority of the topography in the eastern Alaska Range lies north of the Fault. A region of low topography separates the eastern Alaska Range from the central Alaska Range, where most of the high topography lies south of the Denali Fault. To the west, there is a restraining bend in the Fault. Southwest of the bend, the north-south trending western Alaska Range takes an abrupt 90 degree turn away from the Denali Fault. I applied 40Ar/39Ar thermochronology to over forty granitic samples to constrain the thermal history of the western and eastern Alaska Range. I combine the 40Ar/39Ar analyses with available apatite fission track and apatite (U-Th)/He dating. I then inferred the Alaska Range's exhumation history from the region's rates and patterns of rock cooling. Periods of mountain building within the Alaska Range are related to Paleocene-Eocene ridge subduction and an associated slab window (~50 Ma to ~35 Ma), Neogene flat-slab subduction of the Yakutat microplate (~24 Ma to present), Yakutat microplate latitudinal variation in thickness (~6 Ma to present), block rotation/migration, and fault reorganization along the Denali Fault. However, it is clear from basin, petrological and thermochronological constraints that not all of the far-field driving mechanisms affected every segment of the Alaska Range to the same degree or at the same time. Alaska Range tectonic reconstruction is also complicated by near-field structural controls on both the timing and extent of deformation. Fault geometry affects both the amount of exhumation (e.g., ~14 km in the Susitna Glacier region of the eastern Alaska Range) and location of topographic development (e.g., north or south of the Denali Fault). The topographic signature we see today is also in part the result of a pre-existing landscape modified by Plio-Quaternary (~3 Ma to present) surface processes

    Outboard Onset of Ross Orogen Magmatism and Subsequent Igneous and Metamorphic Cooling Linked to Slab Rollback during Late-Stage Gondwana Assembly

    Get PDF
    Changes in magmatism and sedimentation along the late Neoproterozoic-early Paleozoic Ross orogenic belt in Antarctica have been linked to the cessation of convergence along the Mozambique belt during the assembly of East-West Gondwana. However, these interpretations are non-unique and are based, in part, on limited thermochronological data sets spread out along large sectors of the East Antarctic margin. We report new 40Ar/39Ar hornblende, muscovite, and biotite age data for plutonic (n = 13) and metasedimentary (n = 3) samples from the Shackleton–Liv Glacier sector of the Queen Maud Mountains in Antarctica. Cumulative 40Ar/39Ar age data show polymodal age peaks (510 Ma, 491 Ma, 475 Ma) that lag peaks in U-Pb igneous crystallization ages, suggesting igneous and metamorphic cooling following magmatism within the region. The 40Ar/39Ar ages are similar to ages in other sectors of the Ross orogen, but younger than detrital mineral 40Ar/39Ar cooling ages indicative of older magmatism and cooling of unexposed inboard areas along the margin. Detrital zircon trace element abundances suggest that the widespread onset of magmatism in outboard localities of the orogen correlates with a ~560–530 Ma decrease in crustal thickness. The timing of crustal thinning recorded by zircon in magmas overlaps with other evidence for the timing of crustal extension, suggesting that the regional onset of magmatism with subsequent igneous and metamorphic cooling probably reflects slab rollback that coincided with possible global plate motion changes induced during the final assembly of Gondwana

    A stable isotope record of late Cenozoic surface uplift of southern Alaska

    No full text
    Although the timing of an acceleration in late-Cenozoic exhumation of southern Alaska is reasonably well constrained as beginning ∼5–∼6 Ma, the surface uplift history of this region remains poorly understood. To assess the extent of surface uplift relative to rapid exhumation, we developed a stable isotope record using the hydrogen isotope composition (δD) of paleo-meteoric water over the last ∼7 Ma from interior basins of Alaska and Yukon Territory. Our record, which is derived from authigenic clays (δDclay) in silicic tephras, documents a ∼50–60% increase in δD values from the late Miocene (∼6–∼7 Ma) through the Plio-Pleistocene transition (∼2–∼3 Ma), followed by near-constant values over at least the last ∼2 Ma. Although this enrichment trend is opposite that of a Rayleigh distillation model typically associated with surface uplift, we suggest that it is consistent with indirect effects of surface uplift on interior Alaska, including changes in aridity, moisture source, and seasonality of moisture. We conclude that the δDclay record documents the creation of a topographic barrier and the associated changes to the climate of interior Alaska and Yukon Territory

    Intracisternal basic fibroblast growth factor enhances functional recovery and up-regulates the expression of a molecular marker of neuronal sprouting following focal cerebral infarction

    No full text
    Focal cerebral infarction (stroke) due to unilateral occlusion of the middle cerebral artery in mature rats produces deficits in sensorimotor function of the contralateral limbs that recover partially over time. We found that biweekly intracisternal injection of basic fibroblast growth factor (bFGF; 0.5 μg/injection), a potent neurotrophic polypeptide, markedly enhanced recovery of sensorimotor function of the contralateral limbs during the first month after stroke without apparent adverse side effects. Immunostaining for growth-associated protein 43 (GAP-43), a molecular marker of axonal sprouting, showed a selective increase in GAP-43 immunoreactivity in the intact sensorimotor cortex contralateral to cerebral infarcts following bFGF treatment. These results show that bFGF treatment can enhance functional recovery after stroke, and that the mechanism may include stimulation of neuronal sprouting in the intact brain
    corecore