419 research outputs found

    An intuitionistic approach to scoring DNA sequences against transcription factor binding site motifs

    Get PDF
    Background: Transcription factors (TFs) control transcription by binding to specific regions of DNA called transcription factor binding sites (TFBSs). The identification of TFBSs is a crucial problem in computational biology and includes the subtask of predicting the location of known TFBS motifs in a given DNA sequence. It has previously been shown that, when scoring matches to known TFBS motifs, interdependencies between positions within a motif should be taken into account. However, this remains a challenging task owing to the fact that sequences similar to those of known TFBSs can occur by chance with a relatively high frequency. Here we present a new method for matching sequences to TFBS motifs based on intuitionistic fuzzy sets (IFS) theory, an approach that has been shown to be particularly appropriate for tackling problems that embody a high degree of uncertainty. Results: We propose SCintuit, a new scoring method for measuring sequence-motif affinity based on IFS theory. Unlike existing methods that consider dependencies between positions, SCintuit is designed to prevent overestimation of less conserved positions of TFBSs. For a given pair of bases, SCintuit is computed not only as a function of their combined probability of occurrence, but also taking into account the individual importance of each single base at its corresponding position. We used SCintuit to identify known TFBSs in DNA sequences. Our method provides excellent results when dealing with both synthetic and real data, outperforming the sensitivity and the specificity of two existing methods in all the experiments we performed. Conclusions: The results show that SCintuit improves the prediction quality for TFs of the existing approaches without compromising sensitivity. In addition, we show how SCintuit can be successfully applied to real research problems. In this study the reliability of the IFS theory for motif discovery tasks is proven

    Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data

    Get PDF
    Background: MicroRNAs (miRNAs) are short, non-coding RNA regulators of protein coding genes. miRNAs play a very important role in diverse biological processes and various diseases. Many algorithms are able to predict miRNA genes and their targets, but their transcription regulation is still under investigation. It is generally believed that intragenic miRNAs (located in introns or exons of protein coding genes) are co-transcribed with their host genes and most intergenic miRNAs transcribed from their own RNA polymerase II (Pol II) promoter. However, the length of the primary transcripts and promoter organization is currently unknown. Methodology: We performed Pol II chromatin immunoprecipitation (ChIP)-chip using a custom array surrounding regions of known miRNA genes. To identify the true core transcription start sites of the miRNA genes we developed a new tool (CPPP). We showed that miRNA genes can be transcribed from promoters located several kilobases away and that their promoters share the same general features as those of protein coding genes. Finally, we found evidence that as many as 26% of the intragenic miRNAs may be transcribed from their own unique promoters. Conclusion: miRNA promoters have similar features to those of protein coding genes, but miRNA transcript organization is more complex. Β© 2009 Corcoran et al

    Sodium Transport in Capillaries Isolated from Rat Brain

    Full text link
    Brain capillary endothelial cells form a bloodbrain barrier (BBB) that appears to play a role in fluid and ion homeostasis in brain. One important transport system that may be involved in this regulatory function is the Na + ,K + -ATPase that was previously demonstrated to be present in isolated brain capillaries. The goal of the present study was to identify additional Na + transport systems in brain capillaries that might contribute to BBB function. Microvessels were isolated from rat brains and 22 Na + uptake by and efflux from the cells were studied. Total 22 Na + uptake was increased and the rate of 22 Na + efflux was decreased by ouabain, confirming the presence of Na + ,K + -ATPase in capillary cells. After inhibition of Na + ,K + -ATPase activity, another saturable Na + transport mechanism became apparent. Capillary uptake of 22 Na + was stimulated by an elevated concentration of Na + or H + inside the cells and inhibited by extracellular Na + , H + , Li + , and NH 4 + . Amiloride inhibited 22 Na + uptake with a K i between 10 βˆ’5 and 10 βˆ’6 M but there was no effect of 1 mM furosemide on 22 Na + uptake by the isolated microvessels. These results indicate the presence in brain capillaries of a transport system capable of mediating Na + / Na + and Na + /H + exchange. As a similar transport system does not appear to be present on the luminal membrane of the brain capillary endothelial cell, it is proposed that Na + /H + exchange occurs primarily across the antiluminal membrane.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66187/1/j.1471-4159.1983.tb09065.x.pd

    mirConnX: condition-specific mRNA-microRNA network integrator

    Get PDF
    mirConnX is a user-friendly web interface for inferring, displaying and parsing mRNA and microRNA (miRNA) gene regulatory networks. mirConnX combines sequence information with gene expression data analysis to create a disease-specific, genome-wide regulatory network. A prior, static network has been constructed for all human and mouse genes. It consists of computationally predicted transcription factor (TF)-gene associations and miRNA target predictions. The prior network is supplemented with known interactions from the literature. Dynamic TF- and miRNA-gene associations are inferred from user-provided expression data using an association measure of choice. The static and dynamic networks are then combined using an integration function with user-specified weights. Visualization of the network and subsequent analysis are provided via a very responsive graphic user interface. Two organisms are currently supported: Homo sapiens and Mus musculus. The intuitive user interface and large database make mirConnX a useful tool for clinical scientists for hypothesis generation and explorations. mirConnX is freely available for academic use at http://www.benoslab.pitt.edu/mirconnx

    Barriers and facilitators of purchasing from short food supply chains: evidence from consumer focus groups in Germany, Spain, Greece and Hungary

    Get PDF
    This study aimed to identify the barriers and facilitators of consumers purchasing from short food supply chains (SFSC). Eight focus groups were conducted with consumers in the rural and urban areas of Germany, Spain, Hungary and Greece. Participants generally felt that increasing the convenience of purchasing SFSC products (in terms of a proximal location and being able to purchase a wide range of produce in one place) was a prerequisite for them to buy such products. Food quality in terms of taste, freshness and organic status were also taken into account in purchase decisions, and there appears to be a greater focus on health rather than the environmental implications of organic production, although the environmental aspects are also appreciated. This study aimed to identify the barriers and facilitators of consumers purchasing from short food supply chains (SFSC). Eight focus groups were conducted with consumers in the rural and urban areas of Germany, Spain, Hungary and Greece. Participants generally felt that increasing the convenience of purchasing SFSC products (in terms of a proximal location and being able to purchase a wide range of produce in one place) was a prerequisite for them to buy such products. Food quality in terms of taste, freshness and organic status were also taken into account in purchase decisions, and there appears to be a greater focus on health rather than the environmental implications of organic production, although the environmental aspects are also appreciated. Some participants also like the idea of supporting their local community through purchasing from local producers and/or retailers. It was believed that small-scale production and SFSC result in better quality food, but participants had less confidence in the hygiene and food safety standards of SFSC compared to longer chains. Participants thought that consumers would purchase local food if they could more easily access a variety of local food in one place, such as through supermarkets, cooperatives, farm shops and markets, or an online platform that aggregates producers.info:eu-repo/semantics/publishedVersio

    Expression of Regulatory Platelet MicroRNAs in Patients with Sickle Cell Disease

    Get PDF
    Background: Increased platelet activation in sickle cell disease (SCD) contributes to a state of hypercoagulability and confers a risk of thromboembolic complications. The role for post-transcriptional regulation of the platelet transcriptome by microRNAs (miRNAs) in SCD has not been previously explored. This is the first study to determine whether platelets from SCD exhibit an altered miRNA expression profile. Methods and Findings: We analyzed the expression of miRNAs isolated from platelets from a primary cohort (SCD = 19, controls = 10) and a validation cohort (SCD = 7, controls = 7) by hybridizing to the Agilent miRNA microarrays. A dramatic difference in miRNA expression profiles between patients and controls was noted in both cohorts separately. A total of 40 differentially expressed platelet miRNAs were identified as common in both cohorts (p-value 0.05, fold change>2) with 24 miRNAs downregulated. Interestingly, 14 of the 24 downregulated miRNAs were members of three families - miR-329, miR-376 and miR-154 - which localized to the epigenetically regulated, maternally imprinted chromosome 14q32 region. We validated the downregulated miRNAs, miR-376a and miR-409-3p, and an upregulated miR-1225-3p using qRT-PCR. Over-expression of the miR-1225-3p in the Meg01 cells was followed by mRNA expression profiling to identify mRNA targets. This resulted in significant transcriptional repression of 1605 transcripts. A combinatorial approach using Meg01 mRNA expression profiles following miR-1225-3p overexpression, a computational prediction analysis of miRNA target sequences and a previously published set of differentially expressed platelet transcripts from SCD patients, identified three novel platelet mRNA targets: PBXIP1, PLAGL2 and PHF20L1. Conclusions: We have identified significant differences in functionally active platelet miRNAs in patients with SCD as compared to controls. These data provide an important inventory of differentially expressed miRNAs in SCD patients and an experimental framework for future studies of miRNAs as regulators of biological pathways in platelets. Β© 2013 Jain et al

    Molecular Modeling of Mechanosensory Ion Channel Structural and Functional Features

    Get PDF
    The DEG/ENaC (Degenerin/Epithelial Sodium Channel) protein family comprises related ion channel subunits from all metazoans, including humans. Members of this protein family play roles in several important biological processes such as transduction of mechanical stimuli, sodium re-absorption and blood pressure regulation. Several blocks of amino acid sequence are conserved in DEG/ENaC proteins, but structure/function relations in this channel class are poorly understood. Given the considerable experimental limitations associated with the crystallization of integral membrane proteins, knowledge-based modeling is often the only route towards obtaining reliable structural information. To gain insight into the structural characteristics of DEG/ENaC ion channels, we derived three-dimensional models of MEC-4 and UNC-8, based on the available crystal structures of ASIC1 (Acid Sensing Ion Channel 1). MEC-4 and UNC-8 are two DEG/ENaC family members involved in mechanosensation and proprioception respectively, in the nematode Caenorhabditis elegans. We used these models to examine the structural effects of specific mutations that alter channel function in vivo. The trimeric MEC-4 model provides insight into the mechanism by which gain-of-function mutations cause structural alterations that result in increased channel permeability, which trigger cell degeneration. Our analysis provides an introductory framework to further investigate the multimeric organization of the DEG/ENaC ion channel complex

    RNA deep sequencing reveals differential MicroRNA expression during development of sea urchin and sea star

    Get PDF
    microRNAs (miRNAs) are small (20-23 nt), non-coding single stranded RNA molecules that act as post-transcriptional regulators of mRNA gene expression. They have been implicated in regulation of developmental processes in diverse organisms. The echinoderms, Strongylocentrotus purpuratus (sea urchin) and Patiria miniata (sea star) are excellent model organisms for studying development with well-characterized transcriptional networks. However, to date, nothing is known about the role of miRNAs during development in these organisms, except that the genes that are involved in the miRNA biogenesis pathway are expressed during their developmental stages. In this paper, we used Illumina Genome Analyzer (Illumina, Inc.) to sequence small RNA libraries in mixed stage population of embryos from one to three days after fertilization of sea urchin and sea star (total of 22,670,000 reads). Analysis of these data revealed the miRNA populations in these two species. We found that 47 and 38 known miRNAs are expressed in sea urchin and sea star, respectively, during early development (32 in common). We also found 13 potentially novel miRNAs in the sea urchin embryonic library. miRNA expression is generally conserved between the two species during development, but 7 miRNAs are highly expressed in only one species. We expect that our two datasets will be a valuable resource for everyone working in the field of developmental biology and the regulatory networks that affect it. The computational pipeline to analyze Illumina reads is available at http://www.benoslab.pitt.edu/services.html. Β© 2011 Kadri et al
    • …
    corecore