620 research outputs found
Open issues in probing interiors of solar-like oscillating main sequence stars: 2. Diversity in the HR diagram
We review some major open issues in the current modelling of low and
intermediate mass, main sequence stars based on seismological studies. The
solar case was discussed in a companion paper, here several issues specific to
other stars than the Sun are illustrated with a few stars observed with CoRoT
and expectations from Kepler data.Comment: GONG 2010 - SoHO 24, A new era of seismology of the Sun and
solar-like stars, To be published in the Journal of Physics: Conference
Series (JPCS
The CoRoT target HD 49933: 2- Comparison of theoretical mode amplitudes with observations
From the seismic data obtained by CoRoT for the star HD 49933 it is possible,
as for the Sun, to constrain models of the excitation of acoustic modes by
turbulent convection. We compare a stochastic excitation model described in
Paper I (arXiv:0910.4027) with the asteroseismology data for HD 49933, a star
that is rather metal poor and significantly hotter than the Sun. Using the mode
linewidths measured by CoRoT for HD 49933 and the theoretical mode excitation
rates computed in Paper I, we derive the expected surface velocity amplitudes
of the acoustic modes detected in HD 49933. Using a calibrated quasi-adiabatic
approximation relating the mode amplitudes in intensity to those in velocity,
we derive the expected values of the mode amplitude in intensity. Our amplitude
calculations are within 1-sigma error bars of the mode surface velocity
spectrum derived with the HARPS spectrograph. The same is found with the mode
amplitudes in intensity derived for HD 49933 from the CoRoT data. On the other
hand, at high frequency, our calculations significantly depart from the CoRoT
and HARPS measurements. We show that assuming a solar metal abundance rather
than the actual metal abundance of the star would result in a larger
discrepancy with the seismic data. Furthermore, calculations that assume the
``new'' solar chemical mixture are in better agreement with the seismic data
than those that assume the ``old'' solar chemical mixture. These results
validate, in the case of a star significantly hotter than the Sun and Alpha Cen
A, the main assumptions in the model of stochastic excitation. However, the
discrepancies seen at high frequency highlight some deficiencies of the
modelling, whose origin remains to be understood.Comment: 8 pages, 3 figures (B-W and color), accepted for publication in
Astronomy & Astrophysics. Corrected typo in Eq. (4). Updated references.
Language improvement
The underlying physical meaning of the relation
Asteroseismology of stars that exhibit solar-like oscillations are enjoying a
growing interest with the wealth of observational results obtained with the
CoRoT and Kepler missions. In this framework, scaling laws between
asteroseismic quantities and stellar parameters are becoming essential tools to
study a rich variety of stars. However, the physical underlying mechanisms of
those scaling laws are still poorly known. Our objective is to provide a
theoretical basis for the scaling between the frequency of the maximum in the
power spectrum () of solar-like oscillations and the cut-off
frequency (). Using the SoHO GOLF observations together with
theoretical considerations, we first confirm that the maximum of the height in
oscillation power spectrum is determined by the so-called \emph{plateau} of the
damping rates. The physical origin of the plateau can be traced to the
destabilizing effect of the Lagrangian perturbation of entropy in the
upper-most layers which becomes important when the modal period and the local
thermal relaxation time-scale are comparable. Based on this analysis, we then
find a linear relation between and , with a
coefficient that depends on the ratio of the Mach number of the exciting
turbulence to the third power to the mixing-length parameter.Comment: 8 pages, 11 figures. Accepted in A&
Oscillation mode linewidths and heights of 23 main-sequence stars observed by Kepler
Solar-like oscillations have been observed by Kepler and CoRoT in many
solar-type stars, thereby providing a way to probe the stars using
asteroseismology. We provide the mode linewidths and mode heights of the
oscillations of various stars as a function of frequency and of effective
temperature. We used a time series of nearly two years of data for each star.
The 23 stars observed belong to the simple or F-like category. The power
spectra of the 23 main-sequence stars were analysed using both maximum
likelihood estimators and Bayesian estimators, providing individual mode
characteristics such as frequencies, linewidths, and mode heights. We study the
source of systematic errors in the mode linewidths and mode heights, and we
present a way to correct these errors with respect to a common reference fit.
Using the correction, we could explain all sources of systematic errors, which
could be reduced to less than 15% for mode linewidths and heights, and
less than 5% for amplitude, when compared to the reference fit. The effect
of a different estimated stellar background and a different estimated splitting
will provide frequency-dependent systematic errors that might affect the
comparison with theoretical mode linewidth and mode height, therefore affecting
the understanding of the physical nature of these parameters. All other sources
of relative systematic errors are less dependent upon frequency. We also
provide the dependence of the so-called linewidth dip, in the middle of the
observed frequency range, as a function of effective temperature. We show that
the depth of the dip decreases with increasing effective temperature. The
dependence of the dip on effective temperature may imply that the mixing length
parameter or the convective flux may increase with effective
temperature.Comment: Accepted by A&A, 38 pages, 35 figures, 26 table
Spin blockade, orbital occupation and charge ordering in La_(1.5)Sr_(0.5)CoO4
Using Co-L_(2,3) and O-K x-ray absorption spectroscopy, we reveal that the
charge ordering in La_(1.5)Sr_(0.5)CoO4 involves high spin (S=3/2) Co^2+ and
low spin (S=0) Co^3+ ions. This provides evidence for the spin blockade
phenomenon as a source for the extremely insulating nature of the
La_(2-x)Sr_(x)CoO4 series. The associated e_g^2 and e_g^0 orbital occupation
accounts for the large contrast in the Co-O bond lengths, and in turn, the high
charge ordering temperature. Yet, the low magnetic ordering temperature is
naturally explained by the presence of the non-magnetic (S=0) Co^3+ ions. From
the identification of the bands we infer that La_(1.5)Sr_(0.5)CoO4 is a narrow
band material.Comment: 5 pages, 3 figure
Properties of oscillation modes in subgiant stars observed by Kepler
Mixed modes seen in evolved stars carry information on their deeper layers
that can place stringent constraints on their physics and on their global
properties (mass, age, etc...). In this study, we present a method to identify
and measure all oscillatory mode characteristics (frequency, height, width).
Analyzing four subgiants stars, we present the first measure of the effect of
the degree of mixture on the l=1 mixed modes characteristics. We also show that
some stars have measurable l=2 mixed modes and discuss the interest of their
measure to constrain the deeper layers of stars.Comment: Accepted to Ap
- …
