1,201 research outputs found

    Evaluation of innovative sprayed-concrete-lined tunnelling

    Get PDF
    The front-shunt tunnel was the first tunnel of the Terminal 5 project at Heathrow to be constructed, and was the first section of sprayed-concrete-lined (SCL) tunnel to be constructed using the method known as LaserShell. This innovation represented a significant deviation from the methods previously used in SCL construction. Therefore it was subjected to a careful examination before and during construction using sophisticated 3D numerical modelling and monitoring during construction. The paper presents typical results from surface settlement levelling, inclinometers and extensometers, pressure cells and tunnel lining displacement measurements, and comments on the performance of the methods and instruments used. The paper then presents the methodology and typical results of the numerical modelling, and shows that the predictions of displacements and stresses compared well with the field measurements. In terms of the control of ground deformations and structural safety the tunnel performed well

    Symmetric spaces of higher rank do not admit differentiable compactifications

    Get PDF
    Any nonpositively curved symmetric space admits a topological compactification, namely the Hadamard compactification. For rank one spaces, this topological compactification can be endowed with a differentiable structure such that the action of the isometry group is differentiable. Moreover, the restriction of the action on the boundary leads to a flat model for some geometry (conformal, CR or quaternionic CR depending of the space). One can ask whether such a differentiable compactification exists for higher rank spaces, hopefully leading to some knew geometry to explore. In this paper we answer negatively.Comment: 13 pages, to appear in Mathematische Annale

    Verifying Temporal Regular Properties of Abstractions of Term Rewriting Systems

    Get PDF
    The tree automaton completion is an algorithm used for proving safety properties of systems that can be modeled by a term rewriting system. This representation and verification technique works well for proving properties of infinite systems like cryptographic protocols or more recently on Java Bytecode programs. This algorithm computes a tree automaton which represents a (regular) over approximation of the set of reachable terms by rewriting initial terms. This approach is limited by the lack of information about rewriting relation between terms. Actually, terms in relation by rewriting are in the same equivalence class: there are recognized by the same state in the tree automaton. Our objective is to produce an automaton embedding an abstraction of the rewriting relation sufficient to prove temporal properties of the term rewriting system. We propose to extend the algorithm to produce an automaton having more equivalence classes to distinguish a term or a subterm from its successors w.r.t. rewriting. While ground transitions are used to recognize equivalence classes of terms, epsilon-transitions represent the rewriting relation between terms. From the completed automaton, it is possible to automatically build a Kripke structure abstracting the rewriting sequence. States of the Kripke structure are states of the tree automaton and the transition relation is given by the set of epsilon-transitions. States of the Kripke structure are labelled by the set of terms recognized using ground transitions. On this Kripke structure, we define the Regular Linear Temporal Logic (R-LTL) for expressing properties. Such properties can then be checked using standard model checking algorithms. The only difference between LTL and R-LTL is that predicates are replaced by regular sets of acceptable terms

    Inter-nanocarrier and nanocarrier-to-cell transfer assays demonstrate the risk of an immediate unloading of dye from labeled lipid nanocapsules

    Get PDF
    Release studies constitute a fundamental part of the nanovector characterization. However, it can be difficult to correctly assess the release of lipophilic compounds from lipid nanocarriers using conventional assays. Previously, we proposed a method including an extraction with oil to measure the loading stability of lipophilic dyes in lipid nanocapsules (LNCs). The method indicated a rapid release of Nile Red from LNCs, while the loading of lipophilic carbocyanine dyes remained stable. This method, although interesting for a rapid screening of the fluorescence labeling stability of nanocarriers, is far from what happens in vivo, where lipid acceptor phases are nanostructured. Here, lipophilic dye loading stability has been assessed, by monitoring dye transfer from LNCs toward stable colloidal lipid nanocompartments, i.e. non-loaded LNCs, using new methodology based on size exclusion chromatography (SEC) and Förster Resonance Energy Transfer (FRET). Dye transfer between LNCs and THP-1 cells (as model for circulating cells) has also been studied by FACS. The assays reveal an almost instantaneous transfer of Nile Red between LNCs, from LNCs to THP-1 cells, between THP-1 cells, and a reversal transfer from THP-1 cells to LNCs. On the contrary, there was no detectable transfer of the lipophilic carbocyanine dyes. Dye release was also analyzed using dialyses, which only revealed a very slow release of Nile Red from LNCs, demonstrating the weakness of membrane based assays for investigations of the lipophilic compound loading stability in lipid nanocarriers. These results highlight the importance of using relevant release assays, and the potential risk of an immediate unloading of lipophilic fluorescent dyes from lipid nanocarriers, in the presence of a lipid acceptor nanocompartment. Some misinterpretations of cellular trafficking and in vivo biodistribution of fluorescent nanoparticles should be avoided

    Interaction induced delocalisation for two particles in a periodic potential

    Full text link
    We consider two interacting particles evolving in a one-dimensional periodic structure embedded in a magnetic field. We show that the strong localization induced by the magnetic field for particular values of the flux per unit cell is destroyed as soon as the particles interact. We study the spectral and the dynamical aspects of this transition.Comment: 4 pages, 5 EPS figures, minor misprints correcte

    Magnetic interference patterns in long disordered Josephson junctions

    Full text link
    We study a diffusive superconductor - normal metal - superconductor (SNS) junction in an external magnetic field. In the limit of a long junction, we find that the form of the dependence of the Josephson current on the field and on the length of the junction depends on the ratio between the junction width and the length associated with the magnetic field. A certain critical ratio between these two length scales separates two different regimes. In narrow junctions, the critical current exhibits a pure decay as a function of the junction length or of the magnetic field. In wide junctions, the critical current exhibits damped oscillations as a function of the same parameters. This damped oscillating behavior differs from the Fraunhofer pattern typical for short or tunnel junctions. In wide and long junctions, superconducting pair correlations and supercurrent are localized along the edges of the junction.Comment: 9 pages, 4 figures, minor modifications corresponding to the published versio
    corecore