Any nonpositively curved symmetric space admits a topological
compactification, namely the Hadamard compactification. For rank one spaces,
this topological compactification can be endowed with a differentiable
structure such that the action of the isometry group is differentiable.
Moreover, the restriction of the action on the boundary leads to a flat model
for some geometry (conformal, CR or quaternionic CR depending of the space).
One can ask whether such a differentiable compactification exists for higher
rank spaces, hopefully leading to some knew geometry to explore. In this paper
we answer negatively.Comment: 13 pages, to appear in Mathematische Annale