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SYMMETRIC SPACES OF HIGHER RANK DO NOT

ADMIT DIFFERENTIABLE COMPACTIFICATIONS

BENOÎT KLOECKNER

Abstract. Any nonpositively curved symmetric space admits a
topological compactification, namely the Hadamard compactifica-
tion. For rank 1 spaces, this topological compactification can be
endowed with a differentiable structure such that the action of the
isometry group is differentiable. Moreover, the restriction of the
action on the boundary leads to a flat model for some geometry
(conformal, CR or quaternionic CR depending of the space). One
can ask whether such a differentiable compactification exists for
higher rank spaces, hopefully leading to some knew geometry to
explore. In this paper we answer negatively.

1. Introduction

Let M be a symmetric space of nonpositive curvature, G its group
of isometries and G0 the identity component in G.

As a Riemannian manifold, M is a Hadamard space and is diffeo-
morphic to an open ball. Its Hadamard compactification (or geodesic
compactification) is a topological gluing of M and its Hadamard bound-
ary M(∞) such that M = M ∪ M(∞) is a closed ball. The group G
acts continuously on M .

When M is of rank one, that is to say when it is negatively curved,
this topological compactification admits “nice” models, carrying an in-
variant differentiable structure: in these models, the action of G is
differentiable on M . Moreover, the restriction of this action to the
boundary is a flat model for some geometry. The boundary spheres of
the real, complex and quaternionic hyperbolic spaces wield the stan-
dard conformal, CR and quaternionic CR structures respectively. Con-
cerning the octonionic hyperbolic plane, the corresponding geometry
has not been studied yet, as far as we know.

It is natural to ask whether such a differentiable compactification
exists when M is of higher rank. One could expect such a model to
give birth to a new, luckily interesting, geometry.

In this paper, we give a negative answer to this question, and show
that the obstruction comes from the spherical building at infinity. This
combinatorial structure is trivial only in the Euclidean and rank one
spaces. Thus there is an alternative: a symmetric space of nonpos-
itive curvature admits either an interesting building at infinity or a
differentiable compactification, not both.
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2 BENOÎT KLOECKNER

1.1. Differentiable compactifications. Our goal is to extend the
differentiable structure of M to the manifold with boundary M , so that
we do not lose symmetry in the process. This leads to the following
definition.

Definition 1. A differentiable Hadamard compactification of M is a
differentiable (C1) structure D on M compatible with the differentiable
structure of M and such that the action of G is C1.

We can define a Cr Hadamard compactification in the same way,
where r can be finite, ∞ or ω, Cω meaning real analytic. When no
precision is given, differentiable means C1.

By a Cr action, we mean that the map G×M → M is Cr. It implies
that G acts by Cr diffeomorphisms and that the map G → Diff(M) is
continuous in the Cr topology.

This condition can be greatly relaxed thanks to the Bochner and
Montgomery theorem: if G acts continuously by Cr diffeomorphisms,
then its action is in fact Cr [2].

For the sake of brevity we will often write “differentiable compacti-
fication” instead of “differentiable Hadamard compactification”. How-
ever, a symmetric space admits other topological compactifications
than the Hadamard one, e.g. Martin, Satake and Furstenberg com-
pactifications. It would be interesting to extend our study to these,
but the Hadamard compactification seems to be of utmost importance
for our question. First, it is very natural, defined directly by the ge-
ometry of the space for a large class of Riemannian manifolds. Second,
there is as far as we know little hope to get a manifold with boundary
from the other compactifications. Either the infinity does not have the
right dimension (e.g. the Poisson boundary) or the most natural dif-
ferentiable structure is that of a manifold with boundary and corners
(e.g. the maximal Satake compactification). A detailed account on all
classical compactifications can be found in [3] and [6].

1.2. Existence of differentiable compactifications. Let us now
discuss the existence of differentiable compactifications for the three
types of nonpositively curved symmetric spaces.
Symmetric spaces of rank 1. It is well known that the real hyperbolic
space H

n admits a differentiable Hadamard compactification, given for
example by the closure of Klein’s ball: the central projection of the
hyperboloid Q = −1 (where Q is the canonical Lorentzian metric on
R

n+1) gives an embedding of H
n into RP

n where the group SO0(1, n) of
isometries of H

n acts analytically. This construction can be generalized
to all symmetric spaces of nonpositive curvature and rank 1.

It is worth noticing that H
n admits other differentiable Hadamard

compactifications. For example, the action of SO0(1, n) on Poincaré’s
ball extends analytically to the closed ball and the resulting action is
not C1 conjugate to the previous one (this can be seen by looking at



DIFFERENTIABLE COMPACTIFICATIONS 3

asymptotic geodesics: they are tangent one to another in the closure of
Poincaré’s ball, not in Klein’s ball.) Details are given in [8], where it
is shown that H

n admits an infinite number of nonconjugate analytic
compactifications in the sense of definition 1.
Euclidean spaces. If M is a Euclidean space, once again it admits a
differentiable Hadamard compactification we briefly describe. Identify
R

n with the affine hyperplane {x0 = 1} of R
n+1 where n is the dimen-

sion of M . The projection of center 0 of M on the open upper unit
half-sphere is a diffeomorphism. Pushing forward by this map we get
an action of G (the affine group) on the open upper half-sphere whose
continuous prolongation to the closed half-sphere is real analytic. This
action is a real analytic Hadamard compactification of M = R

n.
Symmetric spaces of higher rank. The main result of this paper is the
following.

Theorem 1. No noneuclidean symmetric space of rank k > 2 admits
a differentiable Hadamard compactification.

Structure of the paper. From now on, M is supposed to be a symmetric
space of rank k > 2.

We shall start with a simple remark about the natural projection of
a fiber SxM of the unit tangent bundle of M on M(∞).

In the second section we prove that H
2 × R admits no differentiable

Hadamard compactification.
Next we generalize this fact to every product F ×R

k−1 where k > 2
and F is a symmetric space of noncompact type of rank 1.

Finally, we prove Theorem 1.
Note that the different parts are more or less independent: the proof

of Theorem 1 does not make use of preceding results. However some
arguments of Section 4 will be useful, and Section 3 gives a good insight
of the general phenomenon on the simplest case.

2. Apartments and the visual projection

2.1. Apartments. We give some basic vocabulary about the building
structure of M(∞). More details can be found in [1], Appendix 5. Our
main reference for the building structure of a symmetric space is [5].
For details about general buildings, see [4].

Let A be a maximal flat (i.e. a totally geodesic submanifold isometric
to the Euclidean space of maximal dimension) of M , A its closure in
M and A(∞) = A∩M(∞) its boundary. A(∞) is called an apartment
of M(∞). It is a topological submanifold.

Every point of M(∞) belongs to at least one apartment. A point is
said to be regular if it belongs to exactly one apartment, otherwise it
is said to be singular.
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Let x be a point of M(∞). We denote by a(x) the set of all apart-
ments containing x. If x is singular, it is said to have index 1 if a(x) is
minimal with respect to inclusion among sets a(y) of singular y’s.

The connected component of x in the set of points y such that a(x) =
a(y) is a facet. Facets are topological submanifolds. If x is regular, we
call its facet a Weyl chamber or simply a chamber; if x is singular of
index 1, we call its facet a panel.

The dimension of every apartment is k − 1 (where k is the rank of
M). Chambers have dimension k − 1, panels have dimension k − 2.

Two facets are adjacent if their closures intersect. If they are adjacent
and of different dimensions, one is contained in the closure of the other.

The facets form a simplicial complex on M(∞) if M is of noncompact
type. If M has a Euclidean factor, some of the cells are spheres rather
than simplicies.

This complex has the incidence structure of a spherical thick build-
ing, which means:

(1) each apartment is a spherical Coxeter complex (see [4] for de-
tails),

(2) for any two facets, there is an apartment containing both of
them,

(3) there exists at least three chambers adjacent to any given panel,
(4) if there are two apartments A, A′ containing two facets F and

F ′, then there is an isomorphism A 7→ A′ fixing F and F ′

pointwise.

The group G acts by isomorphisms on this building: it preserves the
adjacency relation and sends facets onto facets of the same dimension.

2.2. Non smoothness of the visual projection. Let x be a point
of M . A unit vector v tangent to M at x defines a geodesic ray γv,
hence a point γv(∞) of the Hadamard boundary M(∞). The map

πx :
SxM → M(∞)

v 7→ γv(∞)

is called the visual projection from the point x.
For all x, the visual projection from x is a homeomorphism. It seems

reasonable to expect the visual projections to be diffeomorphisms for a
“good” differentiable Hadamard compactification. However, it cannot
be.

Proposition 1. If M is a nonpositively curved symmetric space of
higher rank, there is no differentiable structure on M(∞) such that all
apartments are submanifolds.

Proof. Let γ be some geodesic ray in M that is singular of index 1. As
the spherical building at infinity of M is thick, there are at least three
(in fact, an infinite number of) chambers C1, C2, C3 adjacent to P .
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For each pair Ci, Cj (i 6= j) there is a flat Aij such that Ci ⊆ Aij(∞)
and Cj ⊆ Aij(∞). But Aij(∞) is an embedded submanifold of M(∞),
thus Ci and Cj have opposite tangent half spaces Ei, Ej at γ(∞). See
figure 1.

Figure 1. Three chambers meeting at a panel.

Thus we get three half subspaces E1, E2, E3 of Tγ(∞)M(∞) such
that E1 = −E2, E1 = −E3, E2 = −E3, a contradiction. �

Corollary 1. There is no differentiable structure on M(∞) such that
πx is a diffeomorphism for all x ∈ M .

Proof. Suppose there is such a differentiable structure.
Let A be a maximal flat of M , x be a point of A.
Then SxA is an embedded submanifold of SxM and πx is a diffeo-

morphism. Thus A(∞) = πx(SxA) is a submanifold of M(∞). A
contradiction with Proposition 1. �

3. Study of H
2 × R

We summarize briefly the building structure of H
2 × R.

The singular geodesics are those of the form {x} × R where x is a
point of H

2; they are parallel (asymptotic at both ends) to one another.
The maximal flats are the products γ × R where γ is a geodesic of H

2

(see figure 2).
The boundary of H

2 × R is a 2-sphere partitionned into two points
and a family of nonintersecting curves joining them. The points are the
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end points of every singular geodesic, therefore panels of the building.
The curves are the Weyl chambers, there is one of them for each point
in the boundary of H

2 (see figure 3). The union of any two of them
and of the two panels is an apartment.

Figure 2. A family of parallel singular geodesics lying
on the same flat.

Figure 3. Here we show the Weyl chambers in the
boundary of H

2 × R. Any choice of two of them cor-
responds to a geodesic of H

2, a flat of H
2 × R and an

apartment.

Proposition 2. The space H
2 ×R admits no differentiable Hadamard

compactification.
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Proof. Suppose D is a differentiable Hadamard compactification of
M = H

2 × R and M is endowed with D.
Let γ = {x} × R

+ be any singular geodesic ray of unit speed. We
denote by γ(∞) the point of M(∞) defined by γ.

Since γ(∞) is fixed by all orientation-preserving isometries of H
2, the

derivatives of these isometries give a linear representation of PSL2(R)
on Tγ(∞)M . This representation is reducible as Tγ(∞)M(∞) is an invari-
ant subspace. Let ρ be the induced representation. As a representation
of a simple Lie group ρ is trivial or faithful.

Let sx be the geodesic symmetry of H
2 around x. We identify sx

with the isometry sx × Id of H
2 × R. For every time t ∈ R, dsx(γ(t))

has eigenvalues 1, −1, −1. By continuity, dsx(γ(∞)) must have the
same eigenvalues, thus the restriction to Tγ(∞)M(∞) of dsx(γ(∞)) is
−Id, that is to say ρ(sx) = −Id.

Let y be any point of H
2 different from x. Then ρ(sy) = −Id too.

Thus ρ(sxsy) = Id, but sxsy is a non-trivial hyperbolic transformation
(it is a translation along the geodesic containing x and y). Thus ρ is
neither faithful nor trivial, a contradiction. �

4. Product of a Euclidean space by a rank 1 space

We now generalize Proposition 2 to the case when M = F ×R
k−1 is

the product of an Euclidean space by a symmetric space F of rank 1.
However, as we will need it later, we prove something stronger.

Definition 2. A weak differentiable Hadamard compactification of M
is defined as a differentiable Hadamard compactification where we re-
place G by its identity component G0.

We prove that M admits no weak differentiable Hadamard compact-
ification. Thus, in order to generalize the argument used in the proof
of Proposition 2 we need the geodesic symmetries to belong to G0. Of
course this is false if F is of odd dimension, and we shall use another
argument in this case.

Proposition 3. Let F be a rank 1 symmetric space of noncompact
type. If dim F is even, then the geodesic symmetries belong to G0. If
dim F is odd, then F is a real hyperbolic space H

2m+1.

Proof. From the classification of symmetric spaces (see for example [7],
Chapter IX) we know that the rank 1 symmetric spaces of noncompact
type are: the real hyperbolic spaces, the complex hyperbolic spaces,
the quaternionic hyperbolic spaces and an exceptionnal space, the oc-
tonionic hyperbolic plane (therefore the last assertion is clear). The
identity components of their isometry groups are respectively SO0(1, n),
SU(1, n), Sp(1, n) and F4(−20), which are simple Lie groups.

We shall use the following criterion. Let g = k + p be a Cartan
decomposition of the Lie algebra of G0. Then the geodesic symmetries
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are in G0 if and only if k contains a maximal abelian algebra of g (see
[7], Chapter IX 3).

It is know sufficient to compare the ranks of g and k (most of them
can be found in [9], Appendix C):

• in the real case, g = so(n, 1) is of rank ⌊1
2
(n+1)⌋ and k = so(p),

of rank ⌊n/2⌋. These two ranks coincide exactly when n is even,
• in the complex case, g = su(n, 1) and k = s(u(n) × u(1)) are

both of rank n,
• in the quaternionic case, g = sp(n, 1) and k = sp(n)× sp(1) are

both of rank n + 1,
• in the octonionic case, g = f4(−20) and k = so(9) are both of

rank 4. I wish to thank Fokko du Cloux, Jérôme Germoni and
Bruno Sévennec for explaning this case to me.

�

We can now prove the following.

Proposition 4. If M = F ×R
k−1 where F is a rank 1 symmetric space

of noncompact type, then M admits no weak differentiable Hadamard
compactification. In particular, M admits no differentiable Hadamard
compactification.

Proof. Suppose there is such a differentiable structure on M .
We identify an isometry g of F with the isometry g × Id of M . We

denote the component of identity of the group of isometries of F by
GF

0 and consider it a subgroup of G0.
We first suppose that F is of even dimension.
Let sx and sy be the geodesic symmetries around two different points

x and y of F . Let d be a geodesic of R
k−1. Then γ1 = {x} × d and

γ2 = {y} × d are asymptotic and z = γ1(+∞) = γ2(+∞) is a singular
point of index 1 of M(∞).

Differentiation g 7→ dg(z) gives us a linear representation of GF
0 in

TzM . This representation is reducible since TzM(∞) is an invariant
subspace. Let ρ be the representation induced on TzM(∞).

We now decompose the representation ρ. For all t ∈ R, the eigenval-
ues of dsx(γ1(t)) are 1 with multiplicity k− 1 and −1 with multiplicity
dim F . Thus, ρ(sx) must have eigenvalues 1 with multiplicity k − 2
and −1 with multiplicity dim F (an eigendirection transverse to the
boundary must have a nonnegative eigenvalue).

We shall decompose ρ using the following lemma.

Lemma 1. The panel P of γ1(∞) is a differentiable submanifold of
M(∞).

Proof. The panel P is pointwise fixed by all isometries of F . Thus it is
pointwise fixed by sx. In a local chart, it is defined by p ∈ P ⇒ sx(p)−
p = 0. Since sx−Id has rank dim F and dim M(∞) = dim F +k−2, the
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inverse function theorem implies that P is contained in a differentiable
submanifold of M(∞) of dimension k−2 (namely the set of fixed points
of sx). But, as a panel in the boundary of a rank k symmetric space,
it is an open topological manifold of dimension k − 2. Thus P is a
differentiable submanifold of dimension k − 2 of M(∞). �

The tangent space TzP is an invariant subspace of ρ. Thus, this
representation splits in two parts : ρ = ρ0 ⊕ ρ1 where ρ0 is the trivial
representation of dimension k−2 and ρ1 is a representation of dimension
dim F .

Now we have a representation ρ1 (which, as GF
0 is simple, must be

faithful or trivial) with ρ1(sx) = −Id. So ρ1 cannot be trivial. But
dsy(γ2(t)) has the same eigenvalues as dsx(γ1(t)), and thus ρ1(sy) =
−Id too. Now we have ρ1(sxsy) = Id with sxsy a hyperbolic transfor-
mation, so ρ1 cannot be faithful, a contradiction.

Suppose now that F is of odd dimension.
We have F = H

2m+1, the real hyperbolic space. The geodesic sym-
metries are not in G0 (their determinant is −1) and we shall use Propo-
sition 1.

Let A be a maximal flat. Then A is the product of a geodesic γ of
F by R

k−1. Let r ∈ GF
0 be the rotation of angle π around γ in F ; A

is the set of fixed points of r, and A(∞) is the set of fixed points of r
in M(∞). Since r is an involution, A(∞) is a submanifold of M(∞),
a contradiction to Proposition 1.

We give an alternative proof for the odd dimension case, less ele-
gant but more useful for the proof of Theorem 1. We can define the
representation ρ1 like in the even dimension case. Then ρ1 is a repre-
sentation of dimension dim F of GF

0 . Since, for all x ∈ M fixed by r,
dr(x) has eigenvalues −1 with multiplicity 2m and 1 with multiplicity
k, ρ1(r) has eigenvalues −1 with multiplicity 2m and 1 with multiplicity
1. Thus ρ1(r) 6= Id, hence ρ1 is not trivial.

But GF
0 = SO0(2m + 1, 1) admits no non trivial representation of

dimension less than 2m + 2, a contradiction. �

5. Proof of Theorem 1

We shall now prove Theorem 1 with the same ideas that we used for
the previous propositions.

Let M be a noneuclidean symmetric space of nonpositive curvature
of dimension n and rank k > 1. As before, G is the group of all
isometries of M , G0 is the identity component of G and g is the Lie
algebra of G.

Suppose that there exists a differentiable Hadamard compactification
D of M .

We denote by α the action of G on M . We also denote by α the
corresponding action of g.
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The first step is to find in M an embedded product F × R
k−1.

Let γ be a singular geodesic of index 1. Let Fγ be the union of
geodesics parallel to γ (recall that parallel means that they are both
positively and negatively asymptotic). Then, Fγ is a totally geodesic
submanifold of M isometric to a product F × R

k−1 where F is a sym-
metric space of rank 1 (see [5] Section 2.11).

Let F γ be the closure of Fγ in M and Fγ(∞) = F γ ∩ M(∞).
It would be interesting to prove that F γ is a submanifold of M , since

we could directly use Proposition 4 to get a contradiction, but a weaker
statement (namely Lemma 7) will be sufficient.

Up to a change of parametrization we can write

γ(t) = (p, (t, 0, . . . , 0))

where p ∈ F , and F t = F × {(t, 0 . . . , 0)} is identified with its embed-
ding into M .

Since F , identified with F 0, is a totally geodesic submanifold of M ,
the Lie algebra of the group GF of isometries of F is a subalgebra of
g and the identity component GF

0 of GF is a subgroup of G0 (that’s
why we needed the stronger statement in Proposition 4). Thus taking
derivatives gives us a representation ρ of GF

0 on Tγ(∞)M .
Let kt ⊕ pt be the Cartan decomposition of g at γ(t). Since Fγ is

a totally geodesic submanifold we have a further decomposition pt =
pt

F ⊕pt
eucl⊕pt

0 where the terms are pairwise orthogonal (with respect to
the Killing form), pt

F is mapped by α onto TpF
t, pt

eucl is mapped onto
TpR

k−1 and pt
0 is mapped onto (TpFγ)

⊥. We define pt
γ = pt

F ⊕ pt
eucl; α

maps pt
γ onto Tγ(t)Fγ . Moreover, pt

γ is the set of all Killing fields in p

commuting with that Killing field X ∈ pt such that α(X) is the unit
tangent vector of γ.

We shall split ρ in three parts in correspondence with the splitting
pt = pt

F ⊕ pt
eucl ⊕ pt

0. To achieve this, we use the following stability
result.

Lemma 2. Let K be any compact group and (µt)t∈R be a continuous
family of linear representations of K on some finite-dimensional real
vector space V . Then for all pairs (t1, t2) of real numbers, the repre-
sentations µt1 and µt2 are conjugate.

Proof. As K is compact and V is finite-dimensional, the conjugacy class
of a representation µt is determined by its character. More precisely,
the multiplicity in µt of some irreducible representation ν is given by
the scalar product of the characters of µt and ν, hence is a continuous
map. This multiplicity is an integer and is thus constant. �

Lemma 3. The tangent subspaces Tγ(t)F
t, Tγ(t)R

k−1 and (Tγ(t)Fγ)
⊥

admit limits when t → ∞, denoted respectively by VF , Veucl and V0.
Moreover one has Tγ(∞)M = VF ⊕ Veucl ⊕ V0.
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Proof. Let KF
0 be the isotropy group of p in F . Taking derivatives gives

linear representations ρt of KF
0 in Tγ(t)M for all t ∈ R. Then Tγ(t)F

t,
Tγ(t)R

k−1 and (Tγ(t)Fγ)
⊥ are invariant spaces of ρt.

By continuity, the restriction ρ∞ of ρ to KF
0 splits into three parts

and the conclusion holds. �

From Lemma 2 we deduce that the action of ρ∞ is conjugate with
that of ρ0. Since ρt acts trivially on Tγ(t)R

k−1, ρ∞ acts trivially on Veucl.
We shall now prove that VF is an invariant subspace for ρ.

Lemma 4. Let O be the orbit of γ(∞) under the action of G0. Then
V0 = Tγ(∞)O and, for all t, the restriction of αγ(∞) to pt

0 is one-to-one
and onto V0.

Proof. As an orbit, O is a submanifold of M(∞), invariant under the
action of G0, thus Tγ(∞)O is an invariant space of ρ.

The definition of O shows that α sends pt
0 on Tγ(∞)O. We want to

prove that this map is one-to-one and onto.
Let H be an element of pt

0. By definition, α(exp(H))(γ) is not par-
allel to γ. If α(H)γ(∞) = 0, then α(H)γ(−∞) 6= 0. But after conjugacy
by the geodesic symmetry at γ(t) we find α(−H)γ(−∞) = 0, a contra-
diction. Thus the restriction of αγ(∞) to pt

0 is one-to-one.
Since dim pt

0 = n − dim Fγ = (n − 1) − (dim Fγ − 1) = dimO, it is
onto and V0 = Tγ(∞)O. �

Lemma 5. The subspace VF contains no subspace where ρ is trivial.
Let X be that vector of p0

eucl such that γ′(t) = α(X)γ(t). The linear
operator dγ(∞)α(exp X) − Id acting on V0 is of maximal rank.

Proof. The linear action ρ∞ of KF
0 on Tγ(∞)M(∞) is transitive on VF

and ρ∞ is the restriction of ρ to KF
0 thus VF contains no trivial part.

To prove the second part of the lemma, we use the root space de-
composition g = g0 +

∑
gλ given by some maximal flat containing γ.

We have
p0

0 ⊆
∑

λ(X)6=0

gλ

and Ad(exp X) = eλ(X)I on gλ.
Since α is onto from p0

0 to V0, it is onto from
∑

λ(X)6=0 gλ to V0.
For all H ∈ gλ, we have

dγ(∞)α(exp X)(α(H)) = α(Ad(exp(X))(H)) = eλ(X)α(H),

and thus dγ(∞)α(exp X) − Id is nondegenerate on V0. �

Lemma 6. The panel P of γ(∞) is a submanifold of M(∞) and its
tangent space at γ(∞) equals Veucl ∩ Tγ(∞)M(∞).

Proof. The panel P is contained in the set of the points of M(∞) left
fixed by the actions of G and of exp(X). Written in local coordinates,
this gives us an infinite system of equations. By Lemma 5 we know
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that this system is of rank at least d = dim V0 + dim VF at γ(∞).
We can extract a subsystem of d equations that is of maximal rank at
γ(∞). The inverse function theorem implies that this subsystem defines
a submanifold of M(∞) of dimension k − 2 = dim Veucl ∩ Tγ(∞)M(∞)
and containing P . But P is topologically a manifold of dimension k−2
and thus must be a differentiable submanifold of M(∞).

Since KF
0 acts trivially on P , its tangent space must be Veucl ∩

Tγ(∞)M(∞). �

Since G acts trivially on P , it must preserve its tangent space. We
are now ready to prove the following.

Lemma 7. The subspace VF is invariant by ρ.

Proof. From previous lemmas we know that V0 and Veucl ∩Tγ(∞)M(∞)
are invariant subspaces for ρ. Since ρ is totally reducible, there exists
some subspace V ′ invariant by ρ such that one has the following de-
composition Tγ(∞)M(∞) = V ′⊕Veucl ∩Tγ(∞)M(∞)⊕V0. But V ′ must
be invariant by ρ∞, and thus V ′ = VF and VF is invariant by ρ. �

Denote by ρ1 the representation of GF
0 induced by ρ on VF .

Since the restriction of ρ1 to KF
0 is the limit of the restriction of

ρt to Tγ(t)F
t, we can now use the same arguments as in the proof of

Proposition 4.
If F is of even dimension, ρ1 is neither trivial nor faithful, a contra-

diction.
If F is of odd dimension, ρ1 is a nontrivial representation of dimen-

sion dim F of GF
0 , a contradiction.

Theorem 1 is proved. Note that we actually get something stronger:
there exists no weak differentiable Hadamard compactification of M ;
the obstructions to differentiability appear in the identity component
of G.
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