61,492 research outputs found
A Method of Areas for Manipulating the Entanglement Properties of One Copy of a Two-Particle Pure State
We consider the problem of how to manipulate the entanglement properties of a
general two-particle pure state, shared between Alice and Bob, by using only
local operations at each end and classical communication between Alice and Bob.
A method is developed in which this type of problem is found to be equivalent
to a problem involving the cutting and pasting of certain shapes along with a
certain colouring problem. We consider two problems. Firstly we find the most
general way of manipulating the state to obtain maximally entangled states.
After such a manipulation the entangled state |11>+|22>+....|mm> is obtained
with probability p_m. We obtain an expression for the optimal average
entanglement. Also, some results of Lo and Popescu pertaining to this problem
are given simple geometric proofs. Secondly, we consider how to manipulate one
two particle entangled pure state to another with certainty. We derive
Nielsen's theorem (which states the necessary and sufficient condition for this
to be possible) using the method of areas.Comment: 29 pages, 9 figures. Section 2.4 clarified. Error in second colouring
theorem (section 3.2) corrected. Some other minor change
Application of a flight test and data analysis technique to flutter of a drone aircraft
Modal identification results presented were obtained from recent flight flutter tests of a drone vehicle with a research wing (DAST ARW-1 for Drones for Aerodynamic and Structural Testing, Aeroelastic Research Wing-1). This vehicle is equipped with an active flutter suppression system (FSS). Frequency and damping of several modes are determined by a time domain modal analysis of the impulse response function obtained by Fourier transformations of data from fast swept sine wave excitation by the FSS control surface on the wing. Flutter points are determined for two different altitudes with the FSS off. Data are given for near the flutter boundary with the FSS on
Emergent Run-and-Tumble Behavior in a Simple Model of Chlamydomonas with Intrinsic Noise
Recent experiments on the green alga Chlamydomonas that swims using
synchronized beating of a pair of flagella have revealed that it exhibits a
run-and-tumble behavior similar to that of bacteria such as E. Coli. Using a
simple purely hydrodynamic model that incorporates a stroke cycle and an
intrinsic Gaussian white noise, we show that a stochastic run-and-tumble
behavior could emerge, due to the nonlinearity of the combined
synchronization-rotation-translation dynamics. This suggests the intriguing
possibility that the alga might exploit nonlinear mechanics---as opposed to
sophisticated biochemical circuitry as used by bacteria---to control its
behavior.Comment: 5 pages, 2 composite figures (made of 12 separate EPS files
Entangled Mixed States and Local Purification
Linden, Massar and Popescu have recently given an optimization argument to
show that a single two-qubit Werner state, or any other mixture of the
maximally entangled Bell states, cannot be purified by local operations and
classical communications. We generalise their result and give a simple
explanation. In particular, we show that no purification scheme using local
operations and classical communications can produce a pure singlet from any
mixed state of two spin-1/2 particles. More generally, no such scheme can
produce a maximally entangled state of any pair of finite-dimensional systems
from a generic mixed state. We also show that the Werner states belong to a
large class of states whose fidelity cannot be increased by such a scheme.Comment: 3 pages, Latex with Revtex. Small clarifications and reference adde
Entanglement and Collective Quantum Operations
We show how shared entanglement, together with classical communication and
local quantum operations, can be used to perform an arbitrary collective
quantum operation upon N spatially-separated qubits. A simple
teleportation-based protocol for achieving this, which requires 2(N-1) ebits of
shared, bipartite entanglement and 4(N-1) classical bits, is proposed. In terms
of the total required entanglement, this protocol is shown to be optimal for
even N in both the asymptotic limit and for `one-shot' applications
Thermodynamics and the Measure of Entanglement
We point out formal correspondences between thermodynamics and entanglement.
By applying them to previous work, we show that entropy of entanglement is the
unique measure of entanglement for pure states.Comment: 8 pages, RevTeX; edited for clarity, additional references, to appear
as a Rapid Communication in Phys. Rev.
Handbook of noise ratings
Handbook announced in Tech Brief is compendium of information describing multifarious noise methods now in use. Reference material gives user better access to definitions, application, and calculation procedures of current noise rating methods
Entanglement of pure states for a single copy
An optimal local conversion strategy between any two pure states of a
bipartite system is presented. It is optimal in that the probability of success
is the largest achievable if the parties which share the system, and which can
communicate classically, are only allowed to act locally on it. The study of
optimal local conversions sheds some light on the entanglement of a single copy
of a pure state. We propose a quantification of such an entanglement by means
of a finite minimal set of new measures from which the optimal probability of
conversion follows.Comment: Revtex, 4 pages, no figures. Minor changes. Appendix remove
Curve fitting of aeroelastic transient response data with exponential functions
The extraction of frequency, damping, amplitude, and phase information from unforced transient response data is considered. These quantities are obtained from the parameters determined by fitting the digitized time-history data in a least-squares sense with complex exponential functions. The highlights of the method are described, and the results of several test cases are presented. The effects of noise are considered both by using analytical examples with random noise and by estimating the standard deviation of the parameters from maximum-likelihood theory
- …