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CURVE FITTING OF AEROELASTIC TRANSIENT
RESPONSE DATA WITH EXPONENTIAL FUNCTIONS

Robert M. Bennett and Robert N. Desmarais

NASA Langley Research Center

SUMMARY

The problem of extracting frequency, damping, amplitude, and phase infor-
mation from unforced transient response data is considered. These quantities
are obtained from the parameters determined by fitting the digitized time-
history data in a least-~squares sense with complex exponential functions. The
highlights of the method are described and the results of several test cases
are presented. The effects of noise are considered both by using analytical
examples with random noise and by estimating the standard deviation of the
parameters from maximum-likelihood theory.

INTRODUCTION

One of the fundamental tasks in flutter testing is the determination of the
frequency and damping of aeroelastic modes. Transient response or free decay
records are often used for extracting this information and may be generated
directly by a method such as the resonant dwell and cut (e.g., see vref. 1), or
indirectly through the use of autocorrelation or randomdec types of data-
reduction techniques (refs. 2 and 3). Graphical or manual techniques have often
been used to determine frequency and damping, but, with the widespread use of
automated data-reduction procedures, numerical curve-fitting techniques of com-
plex exponential functions or damped sine waves are frequently used. There may
be strong interactions between the curve-fitting method and the data-collection
process, especially in the areas of record length requirements and specifica-
tions of noise level and distortion. Several procedures are currently available
for the curve-fitting process (refs. 4 to 6). The purpose of this paper is to
describe a method that takes a somewhat different approach from the previous
works. The emphasis here is on developing a nearly real-time digital technique
that is not only .computationally fast but is also stable in the presence of
real-world noise or contamination effects. A simple direct search technique
for obtaining a least-squares fit using exponential functions has been developed
and is presented. The application to several test cases is presented and dis-
cussed. Some effects of measurement noise are evaluated by comparing test-case
results for different signal-to-noise ratios, and by developing estimates of the
standard deviations of the parameters from maximum-likelihood theory (ref. 7,
e.g.).

It should be kept in mind that although in a practical engineering sense
the use of exponential functions for the analysis of data may be satisfactory,
the aeroelastic equations are not strictly constant-coefficient ordinary
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differential equations (ref. 8) and may involve other functions. Furthermore,

the extrapolation of damping measured at subcritical conditions to flutter may

also have shortcomings. For example, a case presented in reference 9 indicated
a slope and curvature away from a flutter crossing in a plot of damping against
velocity, even up to within 2 percent of the flutter speed.

SYMBOLS
aO coefficient in curve fit, the offset or static value (eq. (1))
a, coefficient of kth cosine term in curve fit (eq. (1))
bk coefficient of kth sine term in curve fit (eq. (1))
E mean—-squared error (eq. (2))
i expected value (eq. (3))
f frequency, Hz
fi ith data point of digitized time history
i data point index, 1 to N
i parameter index
K number of modes in curve fit
k modal index, 1 to K
N number of data points in digitized time history
Rl output error covariance matrix
S parameter sensitivity matrix
t time, seconds
v velocity
Vf flutter velocity
Y curve~-fitting expression (eq. (1))
C fraction of critical damping
n damping coefficient (eq. (1))
) frequency, rad/sec
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ANALYSIS

Least~Squares Fitting Procedure

Given a free decay record containing the response of one or more vibration
modes in the form of a digitized time history, the problem is to determine the
modal damping, frequency, amplitude, and phase of each mode. A least-squares
curve fit is made with complex exponential functions (or damped sine waves) in
the form

K -nkt
Y(t) = aO + kzl e (ak cos wkt + bk sin mkt) 1)

by minimizing the squared-error difference between the output fit Y(t{) and
the input time history £f;. The error is given by

N

E = izl [¥(e,) - fi]2 (2)

Inspection of equation (1) shows that if nj, and wy are preassigned, it
is possible to compute agy, ag, and by by solving a linear least-squares prob-
lem. The nonlinear parameters 0, and wyp must be determined by some type of
search algorithm., Although this is a standard nonlinear, unconstrained optimi-
zation problem for which several methods are available for trial, for simplicity
a direct search technique is used to search the coordinate space (Ng,wy) until
the values that minimize equation (2) are obtained. At each step, values for
Nk and Wk are determined, the small linear system solved, and the error
recomputed.

The technique has been programed for the Xerox Sigma 5 digital computer.
In the program, the coordinate stepping process proceeds as follows:

(1) A starting set of coordinates np,wy (k =1, . . ., K) and a starting
step size are furnished to the program.

(2) The error E is computed at (nk,wk) and at 4K additional points
obtained by adding and subtracting the step size to or from each value of ny
and wp. If the central error E 1is less than any of the 4K peripheral
values of E, the step size is reduced by 75 percent, and the calculations are
repeated.

(3) Otherwise, the point that gave the lowest value of E 1is taken to be
the new central point, and the step size is increased by 10 percent.

(4) The procedure is terminated when either the step size has been reduced

below a preassigned threshold or a preassigned number of steps have been
executed.
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The method requires starting values for ny and wg. For a single mode the
starters can be arbitrary. However, for the multiple-mode case, the computer
time can be significantly reduced by choosing good starters. The following
procedure has been found to be a reasonable way of getting starters for
multiple-mode cases:

(a) Generate a one-mode solution using arbitrary starters.

(b) Compute the difference between the one-mode solution and the input
data, that is, the output error. Then generate a one-mode fit to the error.

(c) Use the ni and wy values from steps (a) and (b) as the starters
for the two-mode solution.

(d)‘ For higher modes, steps (b) and (c) are repeated using the difference
between the current multiple-mode solution and the original data to estimate
the next higher mode,

Although this procedure is cumbersome, it appears to be stable and, at
least for the single-mode case, surprisingly fast. It would also be very help-
ful to set the method up on an interactive basis similar to the technique
described in reference 10.

One of the schemes in the literature is referred to as Prony's method
(ref. 4). It computes Nk and wp by solving a 2K-order polynomial equation
whose coefficients are determined from a least-squares process. The solution
for the coefficients ag, ay, and by 1is then determined by a linear least-
squares procedure, as is done here. Since this method is elegant and computa-
tionally efficient, it was examined during the present study. However, it has
been the authors' experience that although Prony's method works well for perfect
data, it is so sensitive to real-world noise that it is essentially useless even
for generating starters for the search algorithm.

Uncertainty Levels of Estimated Parameters

The standard deviations of the estimated parameters, or uncertainty levels,
can be determined from maximum—~likelihood theory (ref. 7, e.g.). This type of
estimate has provided some useful results in the field of stability and control
(e.g., ref. 11). Assuming only measurement noise that is Gaussian and white,
the expected variance of the parameter vector is

N -1
g1 437 = ) sT(ti)R11 S(ti)] (3)
i=1

where S is the parameter sensitivity matrix, Ry dis the output error covari-
ance matrix, here a constant, and T denotes matrix transpose. The parameter
vector p is made up of ags ays by» N, and w,, and the sensitivity matrix
aY(ti)
is given by Sj(ti) = —ng——. These elements of the sensitivity matrix can be
3
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calculated by directly differentiating equation (1), and the variance is a
normal output parameter. Thus, for a single channel of data, as considered
here, these parameter uncertainty levels can be readily calculated after the
curve-fitting process is completed.

RESULTS AND DISCUSSION

The curve-fitting method has been applied to three sets of data as test
cases. The first case is a calculated damped sine wave with noise added with a
random~number generator. The true answer is thus known. The second case is
wind—-tunnel data from the dynamic calibration of an aircraft gust vane. The
third case is a set of data consisting of the subcritical randomdec signatures
of the response to input noise of a two-dimensional flutter model that was
implemented on an analog computer.

Analytical Test Case

The calculated data for the analytical test case with no added noise are
shown in figure 1(a) and are compared with the fitted curve, which is exact in
this case. For this case, the analytical input function was a single mode with
offset and is given by

Y(t) = 1 - e_St cos 30t

The curve fits for various levels of random noise are shown in figures 1(b)
to 1(d). The noise level is defined as the rms level of the Gaussian noise and
is given as the fraction of the maximum amplitude of the mode that is 1. The
results of the curve fit are summarized in figure 2. Only modest degradation
of the results is shown for reasonable values of noise level of up to 0.10 or
0.20. Also shown, as brackets on the points, are the standard deviations of
the parameters, or uncertainty levels, calculated from equation (3) using the
results output from the curve~fit procedure. In this case the exact modal
parameters are known and it is possible to calculate a predicted uncertainty
level from the exact parameters by assuming that the output error covariance is
the value for the noise only. These predicted levels are shown as dashed lines.
Both results give a good indication of the actual scatter, and thus the confi-
dence level, with noise level. It might be noted that the effect of noise is
larger on the coefficients aj and by than on the damping, frequency, or
offset. Thus, one must be more cautious in using the magnitude and phase
information from such procedures.

These results amply demonstrate that the algorithm works well in the pres-
ence of random measurement noise. It has been the authors' experience, however,
that a test case of this type does not indicate that a method will be satisfac-
tory in practice. The noise here is random with zero mean, whereas in the real
world, the effects of frequency drift, meandering means, and harmonic distortion
are more severe,
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Gust Vane Data

The two cases considered are from a wind-tunnel dynamic calibration of a
light balsa vane used to sense atmospheric turbulence on an aircraft. The vane
was mechanically displaced and released repetitively. Since the response to
tunnel turbulence was a sizable fraction of the total response and the release
conditions somewhat i1l defined, the transients were ensemble averaged. The
background noise was thus diminished, but a pure step response was not obtained.
The two cases considered are called the low-damping case and the high~damping
case (although the low-damping case is relatively highly damped by structural
standards). The data for the low-damping case and the one-mode fit are shown
in figure 3(a). The fit is reasonable, but there is some systematic deviation,
particularly near the rightmost portion of the data. A two-mode fit was com-
puted and, as shown in figure 3(b), gives a significantly improved result. The
results of the one- and two-mode fits are summarized as follows:

One-mode fit

Y(t) = 0.0444

—e'39'9t(0.239 cos 140t - 0.452 sin 140t)

Two—mode fit

Y(t) = 0.0450
—e‘35'1t(o.137 cos 133t - 0.372 sin 133t)

—e"34'6t(o.086 cos 190t - 0.026 sin 190t)

As compared with the one-mode results, the two-mode data indicate that the off-
set is nearly the same, the frequency of the first mode is reduced by about

5 percent, and the damping is reduced by about 10 percent, along with sizable
changes in the coefficients of the first mode. The physical significance of the
second mode is not clear in this case; it may be low-frequency noise that has
not completely averaged out in the ensembling process. However, it is thought
that the results for the first or principal mode obtained in the two-mode fit
are more representative of the system response.

The results for the highly damped case are presented in figures 4(a) and
4(b). The results and trends are similar to those of the low-damping case.
This case is a particularly difficult one to analyze, as it has high damping, a
large offset, and a low-frequency distortion. The algorithm of this paper
appears to give a reasonable result for this case.

Randomdec-Analog Flutter Data
Some subcritical randomdec signatures of the response of a two-dimensional,
two—degree-of-freedom flutter model to input noise on an analog computer are

also treated. The mathematical model and test setup were the same as those of
the investigation of reference 9. The signatures and a one-mode curve fit are
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shown in figures 5(a) to 5(d) as the velocity approaches flutter. As flutter

is approached the signatures show little scatter or distortion, in contrast to
the lower velocities. The signatures contain two modes, but the lower frequency
mode is apparently unconverged in the randomdec procedure and could not be ade-
quately resolved by the curve-fit procedure. The results for the flutter mode
are compared with the exact solution in figure 6. The agreement is quite good
in both frequency and damping, with the flutter speed underpredicted by less
than 1 percent, which is within the expected accuracy of the analog setup.

Thus, the curve~fit procedure appears to be a practical means of analyzing
randomdec signatures.

CONCLUDING REMARKS

A least-squares curve-fitting procedure to extract frequency, damping,
amplitude, and phase information from free decay records has been presented.
The method appears to be stable and to give reasonable results in the presence
of noise. Some of the effects of noise on the parameter estimates can be
assessed by calculating the uncertainty levels from maximum—-likelihood theory.
The method is relatively fast for a one-mode fit, generally requiring 5 to
15 seconds on a Xerox Sigma 5 computer (which would be about 1 second on a
CDC 6600 computer) and thus is a candidate for a real-time method. The two-
mode solution, however, requires 2 to 5 minutes, and a three-mode solution is
very long to calculate. Further work is needed to accelerate the multiple-mode
calculations. It would also be very helpful to set the method up on an inter—
active basis. Currently, the only multiple-channel capability is to fit each
channel of data separately, determine a weighted mean for frequency and damping,
and then recalculate the coefficients for each channel. This procedure may be
satisfactory for engineering purposes, but the development to a true multiple-
channel method may be desirable.
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