Recent experiments on the green alga Chlamydomonas that swims using
synchronized beating of a pair of flagella have revealed that it exhibits a
run-and-tumble behavior similar to that of bacteria such as E. Coli. Using a
simple purely hydrodynamic model that incorporates a stroke cycle and an
intrinsic Gaussian white noise, we show that a stochastic run-and-tumble
behavior could emerge, due to the nonlinearity of the combined
synchronization-rotation-translation dynamics. This suggests the intriguing
possibility that the alga might exploit nonlinear mechanics---as opposed to
sophisticated biochemical circuitry as used by bacteria---to control its
behavior.Comment: 5 pages, 2 composite figures (made of 12 separate EPS files