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Collective operations on a network of spatially-separated
quantum systems can be carried out using local quantum
(LQ) operations, classical communication (CC) and shared
entanglement (SE). Such operations can also be used to com-
municate classical information and establish entanglement be-
tween distant parties. We show how these facts lead to mea-
sures of the inseparability of quantum operations, and ar-
gue that a maximally-inseparable operation on 2 qubits is the
SWAP operation. The generalisation of our argument to N
qubit operations leads to the conclusion that permutation op-
erations are maximally-inseparable. For even N , we find the
minimum SE and CC resources which are sufficient to perform
an arbitrary collective operation. These minimum resources
are 2(N − 1) ebits and 4(N − 1) bits, and these limits can
be attained using a simple teleportation-based protocol. We
also obtain lower bounds on the minimum resources for the
odd case. For all N≥4, we show that the SE/CC resources
required to perform an arbitrary operation are strictly greater
than those that any operation can establish/communicate.

PACS numbers: 03.67.-a, 03.67.Hk

I. INTRODUCTION

Many of the novel information-theoretic properties of
quantum systems are attributable to the existence of en-
tanglement. Entanglement is responsible for the non-
local correlations which can exist between spatially sep-
arated quantum systems, as is revealed by the violation
of Bell’s inequality [1]. It also lies at the heart of sev-
eral intriguing applications of quantum information, such
as quantum teleportation [2], quantum computational
speed-ups [3,4] and certain quantum cryptographic pro-
tocols [5].

The central position of entanglement in quantum in-
formation theory, and its usefulness in applications, has
led to considerable efforts being devoted to finding a suit-
able measure of how much entanglement a quantum sys-
tem contains. This problem has been solved completely
for bipartite pure states [6], and the accepted measure

is the subsystem von Neumann entropy, conventionally
taken to the base 2, so that a maximally-entangled state
of a pair of two-level quantum systems, or qubits [7], pos-
sesses one unit of entanglement. This fundamental unit
is known as an ebit.

The production of entanglement requires the trans-
mission of quantum information between systems. Con-
versely, the transmission of quantum information be-
tween systems can be used to establish entanglement
between them. Perhaps the most perfect expression of
this duality is the fact that there are two equivalent def-
initions of the quantum capacity of a communications
channel [8]. According to one definition [9], it is the
asymptotic maximum amount of quantum information
that can be transmitted per use of the channel, mea-
sured in qubits. In the other [10], it is the asymptotic
maximum number of ebits of entanglement that can be
established between the sending and receiving stations,
again per use of the channel. An important consequence
of this equivalence is the fact that no entanglement can
be created without the transmission of quantum informa-
tion. That is, no entanglement can be created when only
local quantum operations are allowed, and only classical
information can be transmitted.

Collective quantum operations involving multiple
quantum systems can create entanglement and be used
to communicate classical information. Conversely, the
use of entanglement shared by spatially-separated labo-
ratories, in addition to facilities enabling classical com-
munication and arbitrary local quantum operations, per-
mit these laboratories to carry out collective operations
upon a network of separated quantum systems. The abil-
ity to do this will have interesting implications for many
potential applications of quantum information, such as
distributed quantum computing, network quantum com-
munication and the production of novel multiparticle en-
tangled states.

This paper extends the analysis presented in [11],
where we examined the entanglement resources required
to carry out collective quantum operations upon N
qubits, in particular, for the case of even N. In addition
to giving a fuller treatment of this problem, including an
analysis of the odd case, we examine the classical com-
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munication resources required to carry out an arbitrary
collective operation upon N qubits, and also the amount
of classical information that such an operation can be
used to send. An intriguing issue highlighted by these
considerations is that of how we might quantify the ‘in-
separability’ of a quantum operation, rather than that of
a quantum state. As we shall see, this inseparability has
both classical and quantum aspects.

In section II, we examine the use of entanglement and
classical communication to carry out arbitrary collective
operations upon a pair of qubits. A simple protocol
for achieving this, which uses quantum teleportation, is
proposed. Two classical and two quantum measures of
the inseparability of a quantum operation arise naturally
from these considerations. The quantum measures are
analogous to the entanglement of formation [12] and dis-
tillation [13] of quantum states. These are respectively
the minimum amount of entanglement required to per-
form the operation, and the maximum amount of entan-
glement that the operation can establish. The classical
measures of inseparability are respectively the minimum
amount of classical information required to perform the
operation, and the maximum amount of classical infor-
mation that the operation can be used to communicate.
The relationship between these measures leads to the
conclusion that a maximally-inseparable quantum oper-
ation is the SWAP operation, or any other which can be
obtained from it by local unitary transformations.

The remainder of this paper is concerned with collec-
tive operations upon N qubits. The particular issues we
address are: how much bipartite entanglement can an op-
eration be used to establish and how much information
can it be used to communicate? Also, how much bipar-
tite entanglement and classical information are needed to
perform an arbitrary operation?

In section III, we develop a graph-theoretic frame-
work for the representation of bipartite entanglement and
communication networks for N laboratories. Using this
framework, we generalise to the case of N qubits our
teleportation protocol. We show that this protocol is
optimal in the class of protocols which operate by state
teleportation. We also generalise our discussion of quan-
tifying the inseparability of quantum operations to the
N -particle case. As far as the ‘distillation’ measures are
concerned, which quantifies the ability of a quantum op-
eration to establish entanglement and communicate clas-
sical information, we find that permutation operations
are maximally-inseparable. These operations can estab-
lish the largest amount of entanglement, and be used to
communicate the largest amount of classical information.

In section IV, we are concerned with minimising the
entanglement and communication resources required to
perform an arbitrary quantum operation upon N qubits.
There are two distinct scenarios to consider here. On the
one hand, we may wish to determine the minimum re-
sources required to carry our an arbitrary operation just
once. We refer to this as the ‘one-shot’ scenario. On the
other hand, it may be the case that the N laboratories

share a very large amount of entanglement, and are able
to communicate large amounts of classical information.
They may wish to use these resources with maximum ef-
ficiency to carry out an arbitrary operation many times.
The limit as both the resources and the number of rep-
etitions of the operation tends to infinity is known as
the asymptotic limit. In this scenario, the asymptotically
minimum resources are the minimum entanglement and
classical communication that must be used, on average,
per run of the operation.

We find that in terms of both entanglement and com-
munication, our teleportation protocol is optimal, in both
the one-shot and asymptotic scenarios, for even N . We
obtain lower bounds on the minimum resources for the
odd case. We show that, for all N≥4, the classical com-
munication and entanglement resources required to carry
out an arbitrary operation are strictly greater than the
amount of entanglement that can be established, and the
amount of classical information that can be sent, by any
particular operation. We also show that if the manipula-
tion of these resources obeys the same efficiency restric-
tions as those found in entanglement swapping [14] and
indirect communication, then the teleportation protocol
is optimal for allN≥12, and for allN≥4 for entanglement
resources, in the one shot case if only integer resources
are allowed.

II. OPERATIONS INVOLVING TWO QUBITS

We consider first the simple case of just two qubits.
Suppose that two parties, by convention Alice and Bob,
occupy laboratories A and B which contain qubits α and
β respectively. The Hilbert spaces of these systems are
denoted by Hα and Hβ , so that the Hilbert space of the
collective system αβ is the tensor product space Hα⊗Hβ .
In addition to these systems, Alice and Bob also possess
auxiliary local quantum systems, shared entanglement
and a two-way classical communication channel. This
setup is illustrated in figure (1). Using these resources,
Alice and Bob can perform any collective operation by
carrying out the following four steps:

Step 1: Alice teleports the state of α to Bob in labora-
tory B. This costs 1 ebit of entanglement and 2 classical
bits from A to B.

Step 2: Bob, possibly making use of his auxiliary sys-
tems, carries out the operation locally upon the com-
pound system.

Step 3: Bob teleports the final state of Alice’s qubit back
to her. This costs 1 ebit of entanglement and 2 classical
bits from B to A.

Step 4: (Selective operations only) Bob transmits to Al-
ice any classical information that he might have obtained
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at the end of his LQ operation. This step applies only
to (generalised) measurements, in which case it would be
information about the result.

Thus, the total CCSE resources required to perform
an arbitrary collective operation on αβ using teleporta-
tion, such that Alice and Bob share the same classical
information at the end, are

2 ebits + 2 bits(A→B) + 2 bits(B→A) + CS(B→A).

(2.1)

AUXAUX

α β

A B

LQ
SE

CC

LQ

FIG. 1. Illustration of the experimental setup considered
in section 2. Laboratories A and B contain respective qubits
α and β. Their aim is to perform an arbitrary collective op-
eration on these system using shared entanglement (SE) and
a two-way classical communication (CC) channel. They are
also able to perform arbitrary local quantum (LQ) operations,
possibly involving local auxiliary quantum systems and their
respective parts of the entangled systems.

The supplementary information CS(B→A) is that
which is conveyed by Bob to Alice in step 4. This
additional information will be created when the opera-
tion, represented by a completely-positive, linear, trace-
preserving map L, is selective. The most general kind
of operation which gives rise to non-zero supplementary
information is a generalised measurement. A generalised
measurement with M outcomes is described by M pos-
itive, Hermitian operators Er, where r = 1, . . .,M and
∑

rEr = 1. These operators form a positive, operator-
valued measure (POVM) [15] and each of them corre-
sponds to a distinct outcome. If the initial state of αβ is
described by the density operator ρ, then the probability
pr of obtaining outcome r is given by TrρEr. The sup-
plementary information generated at Bob’s laboratory is
given by the Shannon entropy of this distribution

CS = −

M
∑

r=1

prlog2pr. (2.2)

This quantity can take on any non-negative real value.
Clearly, it is zero when the operation is non-selective.
If, however, we consider an operation described by the
POVM

Er =
1

M
, (2.3)

where Bob records the outcome, then the supplementary
information is equal to log2M , which diverges as M→∞.
For this operation, one cannot decrease the supplemen-
tary information using any information that Alice may
have about the initial state ρ, since the probability dis-
tribution is uniform regardless of what the initial state
is.

For selective operations, the transmission of this sup-
plementary information will have epistemological signif-
icance for Alice which may be important in some appli-
cations. She may, for example, wish to carry out some
local operation upon her subsystem, depending on the
supplementary information she receives from Bob. For
the remainder of this paper however, we shall not be
concerned with CS , and when we speak of the classical
information required to complete a quantum operation,
we will mean that which is needed to carry it out non-
selectively. In this paper, we shall be concerned largely
with unitary operations anyway, which are non-selective.

Returning to the teleportation protocol, it may be the
case that the CC and SE resources required to perform
a particular operation, L, are less than those required to
perform any operation, by this method. Let us denote by
CR(L : A→B), CR(L : B→A) and ER(L) the number of
classical bits transmitted in each direction and number
of ebits of entanglement required to carry out L. These
may be regarded respectively as classical and quantum
measures of how nonlocal the operation is, and ER(L)
is therefore somewhat analogous to the entanglement of
formation of quantum states [12].

Alternative classical and quantum measures of insepa-
rability arise naturally if we consider the fact that collec-
tive operations on quantum systems can be used to trans-
mit classical information and establish entanglement be-
tween distant locations. Let us define the quantities
CC(L : A→B), CC(L : B→A) and EC(L), respectively
the maximum number of classical bits that the opera-
tion can be used to communicate in each direction, and
the maximum number of ebits of entanglement that it
can create between A and B. EC(L) is correspondingly
analogous to the entanglement of distillation of quantum
states [13]. We must have

CC(L : A→B)≤CR(L : A→B), (2.4)

CC(L : B→A)≤CR(L : B→A), (2.5)

EC(L)≤ER(L). (2.6)

The first two inequalities come from the fact that all clas-
sical information that the operation can be used to trans-
mit must, in figure (1), be sent over the classical channel.
Equivalently, no classical information can be transmitted
using LQSE operations alone. Were this not the case, it
would be possible to violate relativistic casuality. An in-
triguing argument for this has recently been described
by Eisert et al [16]. The third inequality comes from the
fact that entanglement cannot increase under LQCC op-
erations. For one-way classical communication, this has
been shown by Horodecki and Horodecki [17], to be also
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equivalent to the impossibility of superluminal commu-
nication.

As a consequence of the teleportation protocol, the
minimum CCSE resources required to perform any par-
ticular operation will not exceed 2 ebits of entanglement
and 2 classical bits each way. The most nonlocal quan-
tum operations with regard to the resource measures ER

and CR are those for which the minimum values of these
quantities are both equal to 2. Inequalities (2.4)-(2.6) im-
ply that the maximum values of the EC and CC cannot
exceed 2. Any operation which saturates the limits of 2
on the latter measures must also then saturate inequali-
ties (2.4-2.6), and can be termed a maximally-inseparable
operation.

One such operation is the SWAP operation. This is a
unitary operation US which, for any state |ψα〉∈Hα and
any state |ψβ〉∈Hβ , acts as follows:

US |ψα〉⊗|ψβ〉 = |ψβ〉⊗|ψα〉, (2.7)

that is, it exchanges the states of α and β. The ability of
SWAP to create 2 ebits of entanglement and transmit 2
classical bits each way is easily demonstrated. We shall
now do this, with reference to figures (2) and (3). The
remarkable properties of the SWAP operation are also
described by Collins et al [18] and Eisert et al [16].

|B >α |B >β

|B >β |B >α

A B

A B

SWAP

FIG. 2. Illustration of how the SWAP operation can be
used to communicate two classical bits each way between Al-
ice and Bob.

In figure (2), Alice and Bob initially share 2 ebits of
entanglement in the form of Bell states [19]. Using su-
perdense quantum coding [20], Alice and Bob can each
manipulate one of their particles, those represented by
hollow circles, to produce any of the 4 Bell states that
they wish. The final shared Bell states are |Bα〉 and
|Bβ〉. The SWAP operation is them performed on the
states of the hollow qubits, resulting in each party be-
ing in possession of the entire Bell state which the other
party created. Each then performs a Bell measurement,
which has 4 possible outcomes and thus reveals 2 bits of

information, showing how SWAP can transmit 2 classical
bits each way.

Figure (3) shows how SWAP can be used to establish
2 ebits of entanglement between Alice and Bob. Each
party initially possesses 1 local ebit of entanglement. If
the SWAP operation is used to interchange the states of
one particle from each entangled pair, the result is that
Alice and Bob share 2 ebits of entanglement.

Notice that the SWAP operation cannot be used to cre-
ate 2 ebits of entanglement, and communicate 2 classical
bits each way, simultaneously. In fact, looking at figures
(3) and (4), we can see that one of these processes is
essentially the time-reverse of the other.

A B

A B

SWAP

FIG. 3. Illustration of how the SWAP operation can be
used to establish 2 ebits of entanglement between A and B.

A broader class of maximally-inseparable operations
on 2 qubits can be obtained by considering those which
are equivalent to SWAP up to a bilateral local unitary op-
eration. Specifically, any unitary operation T of the form
T = (Uα2

⊗Uβ2
)US(Uα1

⊗Uβ1
) must require the same en-

tanglement and communication resources as US . Here,
Uαi

and Uβi
are local unitary operations on α and β re-

spectively. The reason for this is simple: it is possible
to convert this operation into the SWAP operation by
just local-unitary transformations, that is, without any
additional entanglement or classical communication re-
sources. This follows from the simple observation that

US = (U †
α2
⊗U †

β2
)T (U †

α1
⊗U †

β1
).

III. MULTIPARTICLE SYSTEMS, GRAPHICAL
REPRESENTATIONS AND TELEPORTATION.

Let us now extend our discussion to the case of N -
particle systems. Instead of just two spatially-separated
laboratories, we now have N of them, which we label Aj ,
where j = 1, . . ., N . In each of these laboratories is a
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qubit, and we label these qj . We are interested in the
CCSE resources required to perform an arbitrary collec-
tive quantum operation involving all N qubits.

Each laboratory shares a certain number of ebits of
entanglement with every other laboratory. In this paper,
we shall, except where indicated, take all entanglement
to be in pure, bipartite form. The N laboratories are also
linked by classical communication channels, so that each
can communicate a certain number of classical bits to the
others. Each laboratory also possesses auxiliary quantum
systems allowing arbitrary local quantum operations to
be performed.

The CCSE resources available to the network of labo-
ratories are conveniently represented using the concepts
of graph theory [21]. Recall that a graph G = (V,E)
is a set V of vertices connected by edges comprising a
set E. If the edges have a sense of direction indicat-
ing an asymmetrical relationship between the vertices it
connects, the graph is said to be a directed graph, or a
digraph. If there is no preferred direction, the graph is
undirected.

These resources can be represented by distinct en-
tanglement and communication graphs. Both graphs
are comprised of N vertices, each of which represents
one of the laboratories Aj . The resource entanglement
graph GE represents the amount of bipartite entangle-
ment shared between each pair of laboratories. Specif-
ically, we write both the jth laboratory and its corre-
sponding vertex as Aj . The weight of the edge joining
vertices Ai and Aj is equal to the number of ebits of
entanglement shared by these laboratories. The graph is
characterised completely by the N×N resource entangle-
ment matrix ER. The element Eij

R of this matrix is equal
to the number of ebits of entanglement shared by Ai and
Aj . The diagonal elements of this matrix are zero.

Clearly, ER is symmetric and the graph GE is undi-
rected. These observations follow from the fact that en-
tanglement is a shared, rather than a directed resource.

As an example, a resource entanglement graph for
N = 4 is depicted in figure (4). This corresponds to
the following resource entanglement matrix:

ER =







0 3 2 6
3 0 1 0
2 1 0 0
6 0 0 0






. (3.1)

Likewise, we can define a resource communication
graph GC . This represents the number of classical bits
that the laboratories can communicate directly to each
other. By directly, we mean that it is not relayed by a
set of intermediate laboratories from origin to destina-
tion. The weight of the edge running from Ai and Aj

represents the number of classical bits that Ai can com-
municate directly to Aj . These weights are the elements
of a correspondingly defined resource communication ma-
trix CR. The ij element of this matrix, Cij

R , is equal to
the number of classical bits that Ai can communicate di-
rectly to Aj . The diagonal elements of this matrix are

also zero. CR is not necessarily symmetric and the graph
GC is directed, which follows from the fact that com-
munication operations have a natural sense of direction
from sender to receiver. An example of a resource com-
munication graph for N = 4 is given in figure (5), which
corresponds to the resource communication matrix

CR =







0 1 4 0
2 0 0 9
0 0 0 0
5 0 0 0






. (3.2)

A1 A2

A3A4

3

16
2

FIG. 4. Example of an entanglement graph GE with
N = 4. This corresponds to the resource entanglement matrix
ER in Eq. (3.1).

The fact that each pair of vertices may be joined by
more than one edge means that GC is, strictly speaking,
a multigraph, indeed a multidigraph since these edges are
directed. We do not, however, wish to unduly proliferate
terminology, so we shall simply use the term graph.

A3

A2A1
1

2

5
9

4

A4
FIG. 5. Example of a communication graph GC with

N = 4. This corresponds to the resource communication
matrix CR in Eq. (3.2).

In either graph, an edge of weight zero is equivalent to
no edge. Thus, if two vertices are not linked by an edge in
the graph GE , then the corresponding laboratories share
no entanglement. Similarly, if there is no edge running
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from vertex Ai to Aj in the graph GC , then Ai cannot
communicate any classical information directly to Aj .

Two quantities which will be of particular interest to us
are the total shared entanglement and the total number
of classical bits that can be communicated. Respectively,
these are

ER =
1

2

∑

ij

Eij
R , (3.3)

CR =
∑

ij

Cij
R . (3.4)

The factor of 1/2 in Eq. (3.3) occurs as a consequence of
the shared nature of entanglement, which implies that the
entanglement shared between each pair of laboratories is
counted twice in the summation.

Having established the framework within which we will
work, let us now see how such resources can be used to
perform an arbitrary collective quantum operation upon
the N qubits qj . The teleportation-based procedure for 2
qubits described in the preceding section admits a natural
generalisation to the case of N qubits, which we now
describe.

We consider the situation in which all laboratories
share entanglement and have the resources for two-way
classical communication with one particular laboratory.
Let this laboratory be A1. It follows that the other labo-
ratories can teleport the states of their qubits to A1. The
operation can then be carried out at A1 as an LQ oper-
ation. The final states of the other qubits can then be
teleported back to their original laboratories, completing
the procedure.

This multiparticle protocol generalises the first 3 steps
of the 2-qubit protocol described in the preceding section.
It requires each of the laboratories A2, . . ., AN to share
2 ebits of entanglement with A1 and for 2 bits of clas-
sical information to be communicated each way between
each of them and A1. The elements of the corresponding
resource entanglement and communication matrices are

Eij
R = Cij

R = 2|δi1 − δ1j |. (3.5)

The corresponding graphs GE and GC are depicted in
figures (6) and (7). The total resource entanglement and
communication are

ER =
CR

2
= 2(N − 1). (3.6)

The graph GE representing the entanglement resources
required by the teleportation protocol is said to be a tree.
Generally speaking, a tree is an connected, acyclic graph,
that is, one where every pair of vertices is connected by
at least one path, and where there are no closed paths.

Any quantum operation on N qubits can be performed
using this method and thus, at least for the topology of
entanglement and communication in our protocol, the
values of ER and CR in Eq. (3.6) are sufficient.

A1

A2 A3
AN

2 2 2

FIG. 6. Resource entanglement graph for the teleportation
protocol.

Much of the remainder of this paper will be concerned
with the issue of whether or not this protocol is optimal:
that is, whether or not there exists a procedure for car-
rying out any quantum operation on N qubits which less
resources than this protocol. Prior to doing so, it is of
interest to determine whether or not this protocol is the
most efficient among those that operate by teleportation
of the states of the qubits concerned.

A1

A2 A3 AN

22 2 2 2 2

FIG. 7. Resource communication graph for the teleporta-
tion protocol.

We have N laboratories Ai, each of which possesses a
corresponding qubit qi. If we wish the N laboratories to
be able to carry out any collective operation upon the
qi by teleporting single qubits, then, as we now show, at
least 2(N − 1) such teleportations must take place.

To see why, suppose that the first teleportation is from
A1 to A2. A2 now has information about A1. Secondly
another lab Ar teleports a state to A3. If they are com-
pletely different labs from the first pairs of laboratories
then A3 can hold information only about one other lab,
Ar. If, however, r = 2, then A3 can hold information
about 3 qubits, q1, q2 and q3.

The most efficient way to pass on information is for
A3 to teleport a state A4 and so on. After N − 1 steps
the best possible situation is that one lab AN can have
information from all of the other labs. None of the other
labs can have a complete set of information. So now
there must be at least a further N − 1 communication

6



events required so that each of the first N − 1 labs can
get information from lab AN . This gives a total of a least
2(N−1) communications in all which costs 2(N−1) ebits.

We saw in the preceding section that the total resource
entanglement for an arbitrary operation upon two parti-
cles can be recovered if the operation in question is uni-
tarily equivalent to SWAP. Also, for such an operation,
the required classical communication facilities required
to complete an arbitrary operation can be fully used to
communicate useful information. An important question
is, does there exist an operation, or class of operations
which fulfills this role in the general N -particle case?

Let us denote the maximum total entanglement that
can be established, and the maximum number of classical
bits that can be sent by any operation by EC and CC re-
spectively. To address this issue, it is helpful to partition
the entire network of N qubits into a single qubit and
a compound system comprised of the remaining N − 1
qubits. How much entanglement can be established be-
tween the location of the isolated qubit and the rest of
the network? Also, how much classical information can
be transmitted in both directions between the location
of this qubit and the remainder?

In the teleportation protocol, a special status was given
to laboratoryA1. However, this choice was arbitrary, and
clearly this role could have been assumed by any labo-
ratory. It follows that any collective quantum operation
upon N qubits can be carried out with each laboratory
sharing no more than 2 ebits of entanglement, and able
to exchange no more than 2 classical bits each way, with
the rest of the network. The reasoning which led us to
inequalities (2.4-2.6) then implies that no operation can
be used to establish more than 2 ebits of pure bipartite
entanglement, or be used to exchange more than 2 classi-
cal bits each way, between any particular laboratory and
the rest of the network.

The maximum total entanglement that can be estab-
lished is then obtained by multiplication of 2 ebits by
the number of laboratories and then dividing by 2, since
entanglement is shared, giving

EC≤N. (3.7)

The maximum number of classical bits that any collective
operation can be used to communicate is obtained by
multiplying the maximum amount of information that
one laboratory can communicate, namely 2 bits, by N,
the number of laboratories, giving

CC≤2N. (3.8)

These bounds are tight, that is, they can be accessed by
a specific class of quantum operations, the permutation
operations.

A unitary permutation operator upon N qubits is de-
scribed by

UP |ψ1〉⊗. . .⊗|ψN 〉 = |ψP (1)〉⊗. . .⊗|ψP (N)〉, (3.9)

where P (i) represents a permutation of the index
i∈[1, N ]. Here, we consider only permutation operations
which satisfy P (i)6=i ∀i∈[1, N ].
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FIG. 8. Illustration of the production of N ebits of entan-
glement by the permutation operation. Here, N = 6 and
the permutation takes {1, 2, 3, 4, 5, 6} to {6, 1, 2, 3, 4, 5}. One
qubit of each initial local ebit is transferred to the successive
laboratory, resulting in the final N shared ebits.

To see that N ebits of entanglement can be established
using a permutation operation, suppose that Ai contains
one local ebit, in the form of, for example, some standard
Bell state. We shall denote this state by |Bi,i〉. The first
and second indices denote the laboratories which possess
the first and second qubits respectively. Suppose now
that the second qubits’ states are permuted according to
Eq. (3.9). This transforms |Bi,i〉 into |Bi,P (i)〉. Following
this permutation, laboratories Ai and AP (i) share the

Bell state |Bi,P (i)〉. There are N laboratories, and so N
shared ebits of entanglement in the form of Bell states
have been established. This procedure is illustrated in
figure (8).

To see that a permutation operation can be used to
communicate 2N classical bits, suppose that AP−1(i)

shares the Bell state |Bi,P−1(i)〉 with Ai. Locally, us-
ing superdense coding, AP−1(i) can manipulate the state
of the second qubit in this Bell state so that it becomes
any of the four possible Bell states. Figure (9) illustrates
this scenario, where each second qubit is represented by
a hollow circle. We may therefore write the state follow-

ing this local manipulation as |B
i,P−1(i)
µ(i) 〉, where the in-

teger µ(i)∈[1, . . ., 4]. The permutation operation is then
carried out on the set of locally-manipulated qubits, re-
sulting in Ai being in possession of the state |Bi,i

µ(i)〉. By

performing a Bell measurement, Ai can read the two bits
of information sent by AP−1(i), and in total 2N bits have
been communicated.
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FIG. 9. Illustration of how permutation operations can be
used to communicate 2N classical bits, using the same cyclic
permutation as in figure (8). Each laboratory initially shares
1 ebit with its successor, which it then manipulates into one
of the 4 Bell states. The manipulated qubits are represented
by hollow circles. The permutation operation is then used
to localise each of these ebits in the successive laboratories.
Individual local Bell measurements are performed upon these,
each of which reveals two classical bits, or 2N bits in total.

As is the case with the SWAP operation for 2 qubits,
the number of ebits that UP can establish is also the min-
imum amount of entanglement required to carry out this
operation. The same is true of the classical communica-
tion resources involved. Suppose that Ai shares one ebit
of entanglement with AP (i) and can communicate 2 clas-
sical bits to this location. Then the permutation opera-
tion can be carried out using these resources to teleport
the state of qubit qi from Ai to AP (i). Permutation oper-
ations, including the SWAP operation, make maximally
efficient use of the resources required to carry them out.

As is also the case with the SWAP operation, any oper-
ation which is equivalent to UP up to an N -partite local
unitary transformation, that is, any unitary operation T
of the form

T =

(

⊗N

i=1
U2

i

)

UP

(

⊗N

j=1
U1

j

)

, (3.10)

where U1
i , U

2
j are arbitrary local unitary operations on

qubits qi and qj , is also maximally-inseparable. This is a
consequence of the fact that UP can be obtained from T
by the local unitary operation

UP =

(

⊗N

i=1
U2†

i

)

T

(

⊗N

j=1
U1†

j

)

. (3.11)

Comparing (3.7) and (3.8) with (3.6), we see that the
total amount of entanglement that can be established,
and the total amount of classical information that can
be sent is strictly less than that required to carry out
an arbitrary operation using the teleportation protocol,
with the exception of the case N = 2. We have not,
however, established the optimality of the teleportation
protocol. We examine this issue in the following section.

IV. RESOURCES REQUIRED TO PERFORM
ARBITRARY MULTIPARTICLE OPERATIONS

A. Graph Symmetrisation

The teleportation-based method for performing an ar-
bitrary collective quantum operation upon N spatially
separated qubits requires ER = 2(N − 1) ebits of entan-
glement and CR = 4(N − 1) classical bits. An obviously
important question is: are these figures optimal, in the
sense that no less entanglement and communication will
suffice?

Unlike the case of N = 2, for general N we cannot
answer this question by making use of the fact that the
resource entanglement and communication required by
the teleportation protocol can respectively be recovered
and used to communicate messages, as can be done with
the SWAP operation. For N > 2, the values of ER and
CR for the teleportation protocol, given by Eq. (3.6), are
strictly greater than the upper bounds on EC and CC in
(3.7) and (3.8). Another approach must be taken to re-
solve this issue. In this section, we show that, for even
N , the resource entanglement and communication re-
quired to perform an arbitrary quantum operation upon
N qubits using the teleportation protocol are indeed the
minimum possible values. We describe a novel proof tech-
nique, which we term graph symmetrisation, to establish
this fact. The same method is then used to find lower
bounds on the minimum values of ER and CR for odd N .
We find that, for N≥4, these lower bounds are strictly
greater than the upper bounds on EC and CC in Eqs.
(3.7) and (3.8).

The problem we will investigate is the following. A
network of laboratories Ai possesses shared bipartite en-
tanglement, described by the graph GE , and facilities
enabling limited classical communication between them,
described by a graph GC . If these graphs describe suf-
ficient resources to enable any collective operation to be
performed upon their respective resident qubits qj , then
what lower bounds must the corresponding values of ER

and CR satisfy?
We commence by making the following observation:

if the graphs GE(V ) and GC(V ) describe sufficient re-
sources, then so does any other pair of graphs obtained
from them by a permutation of the vertices. Note that we
have written the dependence of the graphs on the vertex
set explicitly here. This makes sense intuitively. Never-
theless, here we provide a short proof. Let G′

E(V ) and
G′

C(V ) be the entanglement and communication graphs
obtained from GE(V ) and GC(V ) by a permutation P
of the vertex set. We may write G′

E(V ) = GE(P [V ])
and G′

C(V ) = GC(P [V ]), where P [V ] is the permuta-
tion. The reversibility of permutation operations implies
that GE(V ) = G′

E(P−1[V ]) and GC(V ) = G′
C(P−1[V ]).

Consider now a quantum operation L on the N qubits.
This also depends on the vertex set and so we write it
as L(V ). We can obtain another quantum operation L′
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from L by applying the same permutation to the vertex
set, that is, L′(V ) = L(P [V ]), and L(V ) = L′(P−1[V ]).

If there exists an operation L′(V ) which cannot be
performed using the resources described by the graphs
G′

E(V ) andG′
C(V ), then by reversing the permutation P ,

it follows that L(V ) cannot be carried out using GE(V )
and GC(V ), in contradiction with our premise. Thus, if
the resources described by the graphs GE(V ) and GC(V )
can be used to carry out any quantum operation, then so
do those described by GE(P [V ]) and GC(P [V ]) for any
permutation P of the vertex set V.

Let us now consider the graphs G̃E and G̃C , defined
by

G̃E =
∑

P [V ]

GE(V ), (4.1)

G̃C =
∑

P [V ]

GC(V ). (4.2)

These graphs are constructed by summing over all of the
graphs obtained from GE and GC by permuting the ver-
tices. By summing, we mean summing the entanglement
and communication represented by the weights of the
edges. The resource entanglement and communication
matrices for these graphs are easily obtained. Their ele-
ments are

Ẽij
R =

∑

P [V ]

E
P (i),P (j)
R , (4.3)

C̃ij
R =

∑

P [V ]

C
P (i),P (j)
R . (4.4)

These graphs are regular and complete. A complete
graph is one where each pair of vertices is joined by an
edge. In the case of the graph G̃C , this means that each
pair of vertices is connected by an edge in each direction.
A regular graph is one where all edges have the same
weight. In a network represented by these graphs, all
pairs of laboratories share the same amount of entangle-
ment, and can communicate the same amount of classical
information, in both directions.

For the purposes of illustration, the graphs G̃E and
G̃C are shown in figures (10) and (11) corresponding to
the particular graphs GE and GC in figures (4) and (5).

The regularity and completeness properties are easily
proven, and follow immediately from the fact that the
graphs G̃C and G̃E , being defined as sums over all vertex
permutations, are clearly themselves permutation invari-
ant.

The total resource entanglement and communication
for these graphs, ẼR and C̃R, are easily evaluated in
terms of the corresponding resources represented by the
original graphs GE and GC . Take the case of ẼR: there
are N ! permutations of the vertex set, so G̃E describes
N ! times as much entanglement as GE , that is

ẼR = N !ER. (4.5)

Similarly,

C̃R = N !CR. (4.6)

A1 A2

A3A4
e

e

ee

e e

FIG. 10. Symmetrised resource entanglement graph G̃E

corresponding to the graph GE in figure (4). Here, e, which
is given by eq. (4.7), is equal to 24.

A2

A3

A1

A4

c

c c

c

c

c

c

c

c c cc

FIG. 11. Symmetrised resource communication graph G̃C

corresponding to the graph GC in figure (5). Here, c, which
is given by Eq. (4.8), is equal to 42.

All edges in each of these graphs have the same weight,
and it will be convenient to label these two weights. For
G̃E and G̃C , we denote these edge weights simply by e
and c respectively. These are

e = 2(N − 2)!ER, (4.7)

c = (N − 2)!CR, (4.8)

which follows from Eqs. (4.5) and (4.6), and also from

the fact that the graphs G̃E and G̃C haveN(N−1)/2 and
N(N − 1) edges respectively. For the graphs in figures
(10) and (11), we find that e = 24 and c = 42.

There are N ! permutations of the vertex set. The per-
mutation invariance of the sufficiency condition then im-
plies that the resources represented by the graphs G̃E
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and G̃C can be used to perform any operation N ! times.
By this, we mean the following: suppose that Ai contains
N ! qubits. We can then define N ! sets of qubits, where
each contains one qubit from each laboratory. It will be
possible to perform the same operation separately upon
every one of these sets.

In the next two subsections, we will use the formal-
ism developed here, together with inequalities (2.4-2.6)
to establish lower bounds on the values of e and c. These
lead to lower bounds on ER and CR through Eqs. (4.7)
and (4.8). We shall treat the cases of even and odd N

separately, since, for even N , it is possible to use this
technique to solve for the minimum values of ER and CR

which are sufficient to carry out any operation. These
are those required to implement the teleportation proto-
col described in section III.

B. Necessary and Sufficient Resources for Even N

Using the formalism we have set up, we can obtain the
minimum values of ER and CR exactly when N is even.
The network of N laboratories is assumed to possess suf-
ficient resources, described by the graphs G̃E and G̃C , to
enable any operation to be carried out N ! times. Here,
we consider one particular operation, which we will refer
to as the pairwise-SWAP (PS) operation. This operation
has the effect of swapping the state of a qubit at Aj with
that of one at Aj+1, for all odd j. If we write the two-
particle SWAP operation exchanging the states of qubits
at Aj and Aj+1 as U j+1,j

S , then the PS operation may be
written as

UPS = UN,N−1
S ⊗UN−2,N−3

S ⊗. . .⊗U2,1
S . (4.9)

This operation is illustrated in figure (12).

SWAP

SWAP

A

A A

A

3 4

1 2

FIG. 12. Depiction of the pairwise-SWAP (PS) operation
for N = 4.

The PS operation is a permutation operation which
leaves no vertex invariant, and so it can be used to es-

tablish N ebits of entanglement and to communicate 2N
classical bits. Performing this operation N ! times can
then be used to create N !N ebits of entanglement and
to send 2N !N bits of classical information. From the as-
sumption that the graphs G̃E and G̃C represent sufficient
resources to carry out the N !-fold PS operation, we can
deduce the minimum values of e and c, and using Eqs.
(4.7) and (4.8), those of ER and CR, required to do so.

To determine the minimum value of e, we will make
use of the fact that entanglement cannot increase under
LQCC operations. Consider the situation depicted in
figure (13). We partition the entire network into two
sets. One contains the even laboratories A2, A4, . . ., AN ,
and the other contains the odd ones A1, A3, . . ., AN−1.
We shall refer to these sets as Seven and Sodd.

oddS evenS
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2N!
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N!N

FIG. 13. Use of the resource entanglement graph G̃E to
carry out the N !-fold pairwise-SWAP operation. Initially, the
entanglement resources are distributed according to the graph
G̃E . We have divided the N laboratories into even and odd
sets Seven and Sodd. For the sake of clarity, we have not indi-
cated the internal entanglement of these sets. Each laboratory
in Sodd shares e ebits of entanglement with each laboratory in
Seven. These sets are separated by an imaginary partition, in-
dicated by the broken line. Initially, these sets share (N/2)2e
ebits, and the N !-fold PS operation can create N !N ebits.
The total entanglement shared across this partition cannot
increase, and the requirement that e must be large enough to
carry out the N !-fold PS operation leads to inequalities (4.10)
and (4.11).
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The total entanglement initially shared by these sets
can be calculated in a straightforward manner. Each of
the N/2 laboratories in Sodd shares e ebits with each
laboratory in Seven, that is, Ne/2 ebits with Seven in
total. Adding up the N/2 such contributions from the
laboratories in Sodd gives (N/2)2e ebits initially shared
by Seven and Sodd. The final entanglement they share is
N !N ebits. The total entanglement that Seven and Sodd

share cannot increase, giving the inequality

(

N

2

)2

e≥N !N. (4.10)

Making use of Eq. (4.7), we find that

ER≥2(N − 1). (4.11)

This lower bound on the total resource entanglement is
precisely the amount which is required by the teleporta-
tion protocol. Thus, for even N , the teleportation proto-
col is optimal with regard to the required total resource
entanglement.

This bound has been derived on the basis of the fact
that, in a multiparticle system, the (bipartite) entangle-
ment shared by two exhaustive subsets cannot increase
under LQCC operations. Although the entanglement ini-
tially shared by each pair of laboratories is in pure, bipar-
tite form, the transformation shown in figure (13) may, at
some point, manipulate the resource entanglement into,
possibly mixed, multiparticle entanglement. Our argu-
ment still holds under these circumstances. If the final
entanglement is in multiparticle form, then in order to
carry out the N !-fold PS operation, Aj and Aj+1 will
have to be able to distill 2N ! ebits of pure, bipartite en-
tanglement. The total distillable entanglement between
Seven and Sodd cannot increase, which leads to inequality
(4.10) and thus the teleportation bound in (4.11).

The nonincreasing of entanglement under LQCC oper-
ations is an asymptotic result. It follows that the telepor-
tation protocol is asymptotically optimal for even N . By
asymptotic [22], we mean that, given a very large number
of sets of separated qubits, where the same, arbitrary op-
eration is to be carried out on each set, the teleportation
protocol uses the minimum average entanglement that is
required per run of the operation.

In practical situations, it is often the resources required
to carry out an operation successfully just once that will
be of interest. For general information processing tasks,
the resources required in the ‘one-shot’ scenario are at
least equal to the resources required asymptotically. For
the problem we have considered here, when N is even,
the entanglement resources required in both scenarios are
equal. This is because the teleportation protocol, which
requires 2(N − 1) ebits, can be used to carry out any
collective operation on N qubits once.

The proof that the N laboratories must also be able to
send 4(N−1) classical bits proceeds similarly. The graph

G̃C is assumed to represent sufficient CC resources to

perform any operation N ! times. If this operation is the
PS operation, then it should then be able to communicate
2N !N bits. Given this, and the fact that each laboratory
can communicate c classical bits to each other one, we
can determine the minimum value of c, from which we
can infer the minimum of CR through Eq. (4.8).

Again, we partition the vertex set into Seven and Sodd.
According to inequalities (2.4-2.5), the total amount of
resource communication between the sets Seven and Sodd

cannot be less than the amount of classical information
that the N !-fold PS operation can be used to communi-
cate between these two sets.

According to G̃C , each of the N/2 laboratories in Seven

can communicate c classical bits to each one in Sodd.
From this, we find that the maximum amount of classical
information that can be sent in either direction between
Seven to Sodd odd is (N/2)2c bits.

The N !-fold PS operation can be used to send N !N
bits in either direction Seven to Sodd. Inequalities (2.4-
2.5) imply that

(

N

2

)2

c≥N !N. (4.12)

Making use of Eq. (4.8), we obtain

CR≥4(N − 1), (4.13)

which is the amount of resource communication required
to implement the teleportation protocol. We have thus
shown that, in terms of the total resource entanglement
and communication, the teleportation protocol in section
III is maximally efficient.

C. Necessary Resources for Odd N

Let us now examine the case of odd N . We have been
unable to find a specific operation which proves that the
minimum resources required to carry out any operation
on an odd number of qubits are those employed by the
teleportation protocol. However, using the graph sym-
metrisation technique, it is still possible to obtain lower
bounds on these minimum resources. As before, we as-
sume that the graphs G̃E and G̃C represent sufficient
resources to perform any operation N ! times. The spe-
cific operation we shall consider here is the PS operation
upon the first N−3 qubits, and a separate, cyclic permu-
tation of the remaining three. For N = 3, there is only
this latter part of the operation. We shall refer to this as
the PS+CP operation, and it is illustrated in figure (14).

The PS+CP operation is again a permutation opera-
tion which leaves no vertex invariant. It follows that it
can be used to establish N ebits of entanglement and to
communicate 2N classical bits.

We shall now apply the same arguments as those used
for the PS operation for even N to obtain lower bounds
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on the resources required to carry out the PS+CP oper-
ation. Again, we divide the N laboratories into two sets,
Seven and Sodd.

A5

A

A6

7

SWAP

SWAP

A

A A

A

3 4

1 2

FIG. 14. Depiction of the PS+CP operation for N = 7

Our aim, as before, is to obtain lower bounds on the
minimum values of c and e from the assumption that
G̃E and G̃C represent sufficient resources to perform this
particular operation N ! times.

We begin by deriving a lower bound on the minimum
sufficient resource entanglement ER. In figure (15), the
total initial entanglement between Seven and Sodd is de-
picted, as is the amount of entanglement that can be
established by the N !-fold PS+CP operation. As before,
these sets are divided by an imaginary partition, and the
total entanglement across this partition cannot increase.

Initially, each of the (N − 1)/2 laboratories in Seven

shares e ebits with each of the (N + 1)/2 laboratories in
Sodd. The total amount of entanglement initially shared
by Seven and Sodd is then (N2 − 1)e/4 ebits. There are
two contributions to the amount of entanglement that
can be created by the N !-fold PS+CP operation. One
is that created by the PS part of the operation on the
qubits in the first N − 3 laboratories. This can create
N !(N−3) ebits. The second contribution comes from the
cyclic permutation on the remaining three laboratories.
This gives an additional 2N ! ebits. Inequality (2.6) then
implies

(

N2 − 1

4

)

e≥N !(N − 1). (4.14)

Making use of Eq. (4.8), we obtain a corresponding lower
bound on ER:

ER≥2

(

N

N + 1

)

(N − 1), (4.15)

that is, the teleportation bound multiplied by a factor
of N/(N + 1). The argument given for even N that this
bound cannot be improved upon by converting the initial
bipartite resource entanglement into multiparticle entan-
glement also applies here.
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FIG. 15. Use of the resource entanglement graph G̃E to
carry out the N !-fold PS+CP operation. The initial entan-
glement resources are distributed according to the graph G̃E .
Here, prior to carrying out the operation, the sets Seven and
Sodd share (N2 − 1)e/4 ebits of entanglement. The N !-fold
PS+CP operation can establish N !N ebits between them.
The total entanglement shared by these sets cannot increase,
and the requirement that e must be large enough to carry out
the N !-fold PS+CP operation leads to inequalities (4.14) and
(4.15).

Let us now obtain a lower bound on the minimum re-
source communication CR. As with the even case, we will
make use of the fact that the amount of classical informa-
tion that the PS+CP operation can be used to communi-
cate, in either direction between Seven and Sodd, cannot
exceed the amount of resource communication in this di-
rection that must be consumed in order to implement the
N !-fold PS+CP operation.

For the sake of concreteness, we shall consider com-
munication from Seven to Sodd. Initially, each of the
(N − 1)/2 laboratories in Seven can communicate c clas-
sical bits to each of the (N + 1)/2 laboratories in Sodd.
This implies that the total resource communication from
Seven to Sodd is (N2 − 1)c/4 bits. It is easy to show that
it is the same in the opposite direction.
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As with entanglement, the PS and CP parts of the N !-
fold PS+CP operation make distinct contributions to the
amount of information that this operation can be used to
send from Seven to Sodd. For a single implementation of
PS+CP, the PS part can communicate (N −3) bits from
Seven to Sodd, while the CP part can be used to send
2 bits. Thus, the total amount of classical information
that the N !-fold PS+CP operation can be used to send
in either direction across the partition is N !(N − 1) bits.

The impossibility of this exceeding the resource com-
munication in either direction across the partition implies
that

(

N2 − 1

4

)

c≥N !(N − 1). (4.16)

and, making use of Eq. (4.8), we obtain the correspond-
ing bound for CR:

CR≥4

(

N

N + 1

)

(N − 1), (4.17)

which, like the entanglement bound in (4.15), is the tele-
portation bound multiplied by N/(N + 1).

Like the bounds in (4.11) and (4.13) for the even case,
the lower bounds we have obtained here for the minimum
resource entanglement and communication for odd N are
asymptotic results. However, the fact that the bounds
(4.15) and (4.17) are not integers suggests that if the
available resources are at these bounds, they may not be
very useful in the one-shot case, where it is more desirable
to be able to transmit whole bits of classical information,
and to manipulate whole ebits of entanglement. With
this in mind, let us return to the bound on ER in (4.15)
and consider the inequality

2N(N − 1)

N + 1
= 2(N − 1) − 2 +

4

N + 1
≥2(N − 1) − 2

(4.18)

where the equality is attained only in the limit as N→∞.
If we are to round this bound up to the next integer, we
obtain 2(N − 1) − 1. Thus, the minimum number of
integer ebits able to carry out an arbitrary operation on
an odd number of qubits, in the one-shot case, is bounded
from below by one ebit less than the teleportation bound.

By a similar calculation, one can show, using the bound
in (4.17), that in the one-shot case, if classical informa-
tion is to be transmitted in integer amounts, then the
minimum number of bits needed to carry out an arbi-
trary operation on an odd number of qubits is bounded
from below by 3 bits less than the teleportation bound.
For N = 3, 5, a stronger bound of 2 bits less than re-
source communication for the teleportation protocol is
obtained.

With these observations in mind, the case of N = 3
appears to be particularly significant. For this case, in
the one-shot scenario, we see that at least 3 ebits and

6 classical bits are required. However, we know that a
permutation of 3 qubits can create 3 ebits or be used to
send 6 classical bits. This implies that these bounds must
also hold asymptotically.

It is important to compare the bounds in (4.15) and
(4.17), which hold rigorously in both the one-shot and
asymptotic scenarios, with the maximum amount of
entanglement that can be created, and the maximum
amount of classical information that can be sent, by anN
qubit operation. With this in mind, we note the following
inequality, which holds for all N≥3:

2

(

N

N + 1

)

(N − 1)≥N. (4.19)

The equality is obtained only when N = 3. This implies
that, for all N≥4, the resources required to carry out an
arbitrary operation exceed those that can be recovered,
either by re-establishing consumed entanglement, or us-
ing the resource communication which was consumed to
implement the operation to send useful messages.

As we saw in section II, this is not the case for N = 2,
which can be seen from the properties of the SWAP op-
eration. The remaining case, that of N = 3, is presently
unsolved.

D. Transfer of Expendable Resources

In our derivation of the lower bounds on the mini-
mum resource entanglement and communication needed
to carry out any multiqubit operation, we used specific
operations where certain pairs of laboratories needed
to be able to establish large amounts of entanglement
or communicate large amounts of classical information:
more than is represented by the corresponding edges in
the graphs G̃E and G̃C . Thus, to carry out either the
N !-fold PS or PS+CP operation, the resources from the
other edges in these graphs must somehow be ‘trans-
ferred’ to the edges which must gain resources.

We can formalise this notion in the following way: con-
sider a multiqubit operation L on N qubits. If L is car-
ried out N ! times, then depending on the initial condi-
tions, there may be some pairs of laboratories which will
end up sharing more that e ebits of entanglement, or
exchanging more than c classical bits in either, or per-
haps both directions. Let is define the target entangle-
ment and communication graphs GT

E and GT
C . These

will represent either the number of ebits shared by each
pair of laboratories or the number of classical bits com-
municated, following the N !-fold implementation of L.
These graphs can be characterised by the target entan-
glement and communication matrices ET = {Eij

T } and

CT = {Cij
T }, in the same way as for the resource graphs.

For G̃E andGT
E , we will define a pair of complementary

subsets of the edge set, SE+ and SE−, in the following
way: SE+ is the subset of the edge set, where each edge is

denoted by the unordered pair (i, j), such that Eij
T > e.
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The set SE− contains all edges for which Eij
T ≤e. These

sets contain the edges which respectively gain, and do
not gain entanglement.

Similarly, for the classical communication graphs G̃C

and GT
C , we will define the subsets SC+ and SC− of the

edge set. SC+ contains the edges, represented by ordered

pairs [i, j], for which Cij
T > c, and SC− contains all edges

[i, j] for which Cij
T ≤c.

Here, we shall be particularly interested in the edges
which gain resources. In fact, the resources contained in
the other edges, contained in the sets SE− and SC−, will
be considered expendable. The total expendable entan-
glement and communication are given by

EE =
1

2

∑

(i,j)∈SE−

Ẽij
R , (4.20)

CE =
∑

[i,j]∈SC−

C̃ij
R . (4.21)

The question we would like to answer is: how much of
the expendable entanglement or communication can be
transferred to the set SE+ or SC+? We have been unable
to obtain the general solution to this problem, although
the analysis of the PS operation suggests intuitively ap-
pealing upper bounds.

For the N !-fold PS operation, the values of EE and
CE are easily calculated, where the sets SE+ and SC+

contain the edges linking laboratories whose qubits are
to be swapped. We find that

EE =
1

2
(N2 − 2N)e, (4.22)

CE = (N2 − 2N)c. (4.23)

If each pair of swapped qubits generates 2 ebits of entan-
glement, then as we know, the N !-fold PS operation can
by used to create N !N ebits. The total amount of en-
tanglement which has been added to the set SE+ is then
N !N − (Ne/2) ebits. From inequality (4.10), we see that

N !N −
Ne

2
≤
EE

2
(4.24)

that is, at most half of the expendable entanglement can
be added to the edges in SE+. Whether or not this bound
holds in general for all N , and when the initial resource
entanglement is not described by a regular, complete
graph, is currently unknown. However, we can prove that
it holds in general for N = 3. Consider 3 laboratories,
A1. . .A3. Let their initial and final entanglement be de-
scribed by the resource and target entanglement graphs
GE and GT

E , characterised by the corresponding matrices
ER and ET . The difference between the initial and final
entanglement between each pair of laboratories can be
represented by the matrix ∆ = ET − ER.

The fact that the total amount of entanglement shared
by one laboratory and the other pair cannot increase im-
plies that the sum of the elements in each row or col-
umn of ∆ cannot exceed zero. This also implies that

the entanglement between at most one pair of laborato-
ries can increase. Let this pair of laboratories be A1 and
A2. Summing up the elements of ∆ in rows 1 and 2,
together with the nonincreasing property of the column
sums, gives ∆12≤|∆13 + ∆23|/2. The numerator on the
right hand side is the total amount of entanglement lost.
We see that the entanglement transferred to the edge
(1,2) cannot exceed half of this loss.

This kind of entanglement loss was originally discov-
ered in association with entanglement swapping [14]. It
would be useful to know whether or not it is an unavoid-
able feature of all operations which transfer entangle-
ment, and for an arbitrary number of spatially separated
systems. Any proof, or disproof, of this conjecture must
take into account the possibility that the initial bipartite
resource entanglement is converted into multiparticle en-
tangled states. Some progress has recently been made
towards developing a theory of conversion between bipar-
tite and multiparticle entangled states [23]. The study of
certain particular situations has indicated that these con-
versions are typically lossy. Consequently, we do not be-
lieve that multiparticle entangled states will enable more
efficient entanglement transfer.

Returning to the N !-fold PS operation, we will show
how a similar result relating the expendable communi-
cation to the communication that can be added to the
edges in SC+ can be obtained. The N !-fold PS opera-
tion can by used to send 2N !N bits. The total amount
of communication which has been added to the set SC+

is then 2N !N − Nc bits. From inequality (4.12), we see
that

N !N −
Nc

2
≤
CE

2
(4.25)

that is, at most half of the expendable communication
can be added to the edges in SC+.

This restriction holds in general if the expendable com-
munication is used to transmit information indirectly be-
tween pairs of laboratories. By ‘indirectly’, we mean the
following. the weight of an edge in a resource commu-
nication graph is equal to the number of bits that one
party can transmit along a channel to some other party,
without passing through some intermediate laboratory.
Clearly, the sender can transmit more information to the
receiver if he sends some information via some interme-
diate laboratories. By indirect communication, we mean
this relaying procedure.

Thus, if the sender wishes to send κ bits indirectly,
he will use up at least κ bits of resource communication
sending this information to the intermediate parties, who
will in turn use up at least a further κ bits of resource
communication relaying it to the receiver. So, the κ bits
actually communicated from sender to receiver cannot
exceed the lower bound of 2κ bits depleted from the re-
source communication.

For the remainder of this section, we will make the hy-
pothesis that at most half of the expendable resources
can be transferred is of general validity, and explore its
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consequences for odd N and the PS+CP operation. We
will show that this leads to tighter bounds than (4.15)
and (4.17) on the amount of resource entanglement and
communication needed to carry out an arbitrary opera-
tion on an odd number of qubits.

Let us return to the N !-fold PS+CP operation. Be-
ginning with entanglement, the amount of entanglement
transferred to the edges in SE+ has two contributions.
The entanglement transferred by the PS part of the op-
eration is easily calculated to be (N−3)(2N !−e)/2 ebits.
The amount transferred by the CP part is 3(N ! − e)
ebits. The expendable entanglement is that initially rep-
resented by all other edges in the graph G̃E , and is found
to be

EE =

[

N2

2
−N −

3

2

]

e. (4.26)

The assumption that at most half of the expendable en-
tanglement can be transferred to the edges in SE+ leads
to the inequality

N !N≤e

[

N − 3

2
+ 3

]

+
EE

2
. (4.27)

From the relationship between e and the initial resource
entanglement ER, expressed in Eq. (4.7), we find

ER≥
2(N − 1)

1 + 3/N2
. (4.28)
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FIG. 16. Lower bounds on the resource entanglement and
communication versus the number of qubits. The solid line
corresponds to the teleportation bound in (4.11) and (4.13).
The dotted line indicates the bounds in (4.15) and (4.17) for
the PS+CP operation which hold rigorously for odd N. The
dashed line corresponds to the bounds in (4.28) and (4.29),
for the PS+CP operation and odd N if at most half of the
expendable resources can be transferred.

Similar reasoning can be applied to the required mini-
mum classical communication. If at most half of the ex-
pendable communication is transferable, then the min-
imum number of classical bits required to perform the
PS+CP operation with odd N is bounded by

CR≥
4(N − 1)

1 + 3/N2
. (4.29)

Assuming that inequalities (4.28) and (4.29) hold, let
us deduce the minimum integer resources for the one shot
case, as we did in the previous subsection. To this end,
we note the inequality

2(N − 1)

1 + 3/N2
≥2(N − 1) − 1, (4.30)

for N≥3, with the equality only being attained when
N = 3. From this inequality, we see that for all N≥4,
the minimum integer resource entanglement is equal to
that required to implement the teleportation protocol.
By a similar calculation, one can show that for all N > 3,
the minimum integer resource communication is at least
equal to one bit short of the teleportation bound, and
that for all N≥12, it is the teleportation bound.

Figure (16) illustrates the main asymptotic bounds we
have considered in this paper: the teleportation bound,
the bound derived from the PS+CP operation derived
in the previous subsection and the bound derived from
the PS+CP operation based on the assumption that only
half of the expendable resources are transferable.

To summarise this subsection, we have worked on the
assumption that at most half of the expendable resources
can be transferred. The analysis of the PS operation sup-
ports this conjecture that it is true for all N . If it indeed
is true in general, then in the one-shot case, the tele-
portation protocol is optimal with regard to the resource
entanglement for all odd N 6=3, and also in terms of the
resource communication for all odd N≥13, if only integer
resources are permitted.

V. DISCUSSION.

In this paper, we have examined the properties of
collective quantum operations performed upon spatially
separated quantum systems. We have considered a net-
work of N spatially separated laboratories, each of which
contains one qubit. The network is equipped with facili-
ties for classical communication and local quantum oper-
ations, and each pair of laboratories also shares bipartite
pure entanglement.

This scenario we have considered helps to emphasise
the fact that the final state of each system will depend
upon the initial states of the others. The evolution thus
requires information to be exchanged between the sys-
tems. In classical physics, this is simply classical infor-
mation. If the systems are quantum mechanical, then the
exchange of quantum information is necessary.

The transmission of quantum information from one lo-
cation to another can be achieved by sending quantum
systems, or by quantum teleportation. We have pro-
posed a simple teleportation-based protocol which allows
any quantum operation to be performed upon N sepa-
rated, identical quantum systems. Teleportation requires
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the transmission of classical information and existence
of entanglement shared between the sending and receiv-
ing stations. In the case of N = 2, one particular class
of operations, namely those equivalent, up to bipartite
local unitary transformations, to the SWAP operation,
permits either the minimum classical communication or
entanglement resources required to perform any opera-
tion to be ‘recovered’ for other tasks. These operations
may be regarded as the most inseparable operations for
N = 2.

For N > 2, the situation is more interesting. For N≥4,
no operation can establish the entanglement or be used to
communicate the information necessary to perform any
operation. Whether or not this is also the case for N = 3
is currently unknown. For all N we have determined the
maximum total amount of entanglement that can be es-
tablished, and the maximum total number of classical
bits that can be communicated, by any operation. Per-
mutation operations attain these limits, which are also
the minimum resources required to carry out these spe-
cific operations.

We have also examined the problem of finding the min-
imum resources required to perform an arbitrary opera-
tion. The scenario we considered was one where each pair
of laboratories shares a certain amount of entanglement,
and can communicate a certain number of classical bits
to each other. The problem we addressed was: what are
the minimum values of the total entanglement and com-
munication required to carry out an a priori unknown
operation, that is, unknown prior to the entanglement
and communication resources being set up?

For even N , we have found these minimum resources
exactly, and these can be used to perform an arbitrary op-
eration using teleportation. We arrived at these bounds
using a technique we refer to as graph symmetrisation.
We have shown that the teleportation protocol is optimal
for even N. Whether or not it is also optimal for odd N

is an important outstanding problem. We have shown,
in the even case, that the optimality of the teleportation
protocol can be reinterpreted as coming from a restric-
tion on the extent to which expendable resources can be
transferred from one pair of laboratories to another. In
particular, for any amount of resources transferred, at
least as much are irrevocably lost. The assumption that
this restriction always holds leads to tighter bounds on
the resources required to carry out an arbitrary operation
on an odd number of qubits. These bounds imply that if,
in the one shot scenario, resources can only be consumed
in integer amounts, then the teleportation protocol is op-
timal, for all N > 3 for entanglement and for all N≥12
for communication also. One clear conclusion from our
work is that the case of N = 3 is of particular interest,
since many of our results which apply to all other N 6=2
have not been established for this case. It could be that
graph-theoretic techniques are not suitable for analysing
the 3 qubit case, and that other tools must be employed.
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