4,738 research outputs found

    Time and Space Bounds for Reversible Simulation

    Get PDF
    We prove a general upper bound on the tradeoff between time and space that suffices for the reversible simulation of irreversible computation. Previously, only simulations using exponential time or quadratic space were known. The tradeoff shows for the first time that we can simultaneously achieve subexponential time and subquadratic space. The boundary values are the exponential time with hardly any extra space required by the Lange-McKenzie-Tapp method and the (log3\log 3)th power time with square space required by the Bennett method. We also give the first general lower bound on the extra storage space required by general reversible simulation. This lower bound is optimal in that it is achieved by some reversible simulations.Comment: 11 pages LaTeX, Proc ICALP 2001, Lecture Notes in Computer Science, Vol xxx Springer-Verlag, Berlin, 200

    A Closed-Form Expression for the Gravitational Radiation Rate from Cosmic Strings

    Full text link
    We present a new formula for the rate at which cosmic strings lose energy into gravitational radiation, valid for all piecewise-linear cosmic string loops. At any time, such a loop is composed of NN straight segments, each of which has constant velocity. Any cosmic string loop can be arbitrarily-well approximated by a piecewise-linear loop with NN sufficiently large. The formula is a sum of O(N4)O(N^4) polynomial and log terms, and is exact when the effects of gravitational back-reaction are neglected. For a given loop, the large number of terms makes evaluation ``by hand" impractical, but a computer or symbolic manipulator yields accurate results. The formula is more accurate and convenient than previous methods for finding the gravitational radiation rate, which require numerical evaluation of a four-dimensional integral for each term in an infinite sum. It also avoids the need to estimate the contribution from the tail of the infinite sum. The formula has been tested against all previously published radiation rates for different loop configurations. In the cases where discrepancies were found, they were due to errors in the published work. We have isolated and corrected both the analytic and numerical errors in these cases. To assist future work in this area, a small catalog of results for some simple loop shapes is provided.Comment: 29 pages TeX, 16 figures and computer C-code available via anonymous ftp from directory pub/pcasper at alpha1.csd.uwm.edu, WISC-MILW-94-TH-10, (section 7 has been expanded, two figures added, and minor grammatical changes made.

    A Critical Assessment of Protection for Key Wildlife and Salmon Habitats under the Proposed British Columbia Central Coast Land and Resource Management Plan

    Get PDF
    The Central Coast Land and Resource Management Plan (CCLRMP) table recently declared a consensus1 on proposed protected areas for British Columbia’s Central Coast. This region is recognized for its globally rare and largely intact mainland and island ecosystems and land use decisions should reflect this importance. We evaluated the efficacy of this proposal using a spatial assessment of habitat. We focus on protected areas in the context of the overall CCLRMP. We examined the level of protection provided by the CCLRMP in three key coastal habitats: deer winter range, wolf reproductive habitat, and salmon reproductive and rearing habitat. Assessment of deer winter range was limited to Heiltsuk Territory, which comprises a large proportion of the CCLRMP region

    High levels of intraspecific genetic divergences revealed for Antarctic springtails: evidence for small-scale isolation during Pleistocene glaciation

    Get PDF
    We examined levels of genetic variability within and among populations of three Antarctic springtail species (Arthropoda: Collembola) and tested the hypothesis that genetic divergences occur among glacially-isolated habitats. The study was conducted in southern Victoria Land, Ross Dependency, Antarctica, and samples were collected from locations in the vicinity of the Mackay Glacier. We analyzed mtDNA (cytochrome c oxidase subunit I; COI) sequence variability for 97 individuals representing three species (Gomphiocephalus hodgsoni, N = 67; Cryptopygus nivicolus, N = 20; and Antarcticinella monoculata, N = 8). Haplotype diversity and genetic divergences were calculated and used to indicate population variability and also to infer divergence times of isolated populations using molecular clock estimates. Two of the three species showed high levels of genetic divergence. Gomphiocephalus hodgsoni, a widespread and common species, showed 7.6% sequence divergence on opposite sides of the Mackay Glacier. The more range restricted C. nivicolus showed 4.0% divergence among populations. The third species, A. monoculata, was found in only one location. Molecular clock estimates based on sequence divergences suggest that populations separated within the last 4 Mya. We conclude that habitat fragmentation resulting from Pliocene (5 Mya) and Pleistocene (2 Mya to 10 Kya) glaciations has promoted and maintained high levels of diversity among isolated springtail populations on relatively small spatial scales. The region surrounding the Mackay Glacier is likely to have provided refugia for springtail populations during glacial maxima and remains an area of high genetic and species diversity for Collembola within the Ross Sea region

    The final COS-B database now publicly available

    Get PDF
    The data obtained by the gamma ray satellite COS-B was processed, condensed and integrated together with the relevant mission and experiment parameters into the Final COS-B Database. The database contents and the access programs available with the database are outlined. The final sky coverage and a presentation of the large scale distribution of the observed Milky Way emission are given. The database is announced to be available through the European Space Agency

    Band gap reduction in GaNSb alloys due to the anion mismatch

    Get PDF
    The structural and optoelectronic properties in GaNxSb1–x alloys (0<=x<0.02) grown by molecular-beam epitaxy on both GaSb substrates and AlSb buffer layers on GaAs substrates are investigated. High-resolution x-ray diffraction (XRD) and reciprocal space mapping indicate that the GaNxSb1–x epilayers are of high crystalline quality and the alloy composition is found to be independent of substrate, for identical growth conditions. The band gap of the GaNSb alloys is found to decrease with increasing nitrogen content from absorption spectroscopy. Strain-induced band-gap shifts, Moss-Burstein effects, and band renormalization were ruled out by XRD and Hall measurements. The band-gap reduction is solely due to the substitution of dilute amounts of highly electronegative nitrogen for antimony, and is greater than observed in GaNAs with the same N content

    Non-maximally entangled states: production, characterization and utilization

    Get PDF
    Using a spontaneous-downconversion photon source, we produce true non-maximally entangled states, i.e., without the need for post-selection. The degree and phase of entanglement are readily tunable, and are characterized both by a standard analysis using coincidence minima, and by quantum state tomography of the two-photon state. Using the latter, we experimentally reconstruct the reduced density matrix for the polarization. Finally, we use these states to measure the Hardy fraction, obtaining a result that is 122σ122 \sigma from any local-realistic result.Comment: 4 pages, 4 figures. To appear in Phys. Rev. Let
    corecore