2,726 research outputs found

    Nuclear magnetic resonance spectroscopy: An experimentally accessible paradigm for quantum computing

    Full text link
    We present experimental results which demonstrate that nuclear magnetic resonance spectroscopy is capable of efficiently emulating many of the capabilities of quantum computers, including unitary evolution and coherent superpositions, but without attendant wave-function collapse. Specifically, we have: (1) Implemented the quantum XOR gate in two different ways, one using Pound-Overhauser double resonance, and the other using a spin-coherence double resonance pulse sequence; (2) Demonstrated that the square root of the Pound-Overhauser XOR corresponds to a conditional rotation, thus obtaining a universal set of gates; (3) Devised a spin-coherence implementation of the Toffoli gate, and confirmed that it transforms the equilibrium state of a four-spin system as expected; (4) Used standard gradient-pulse techniques in NMR to equalize all but one of the populations in a two-spin system, so obtaining the pseudo-pure state that corresponds to |00>; (5) Validated that one can identify which basic pseudo-pure state is present by transforming it into one-spin superpositions, whose associated spectra jointly characterize the state; (6) Applied the spin-coherence XOR gate to a one-spin superposition to create an entangled state, and confirmed its existence by detecting the associated double-quantum coherence via gradient-echo methods.Comment: LaTeX + epsfig + amsmath packages, 27 pages, 12 figures, to appear in Physica D; revision updates list of authors and reference

    Acetic acid ketonization over Fe3O4/SiO2 for pyrolysis bio-oil upgrading

    Get PDF
    A family of silica supported, magnetite nanoparticle catalysts was synthesized and investigated for continuous flow acetic acid ketonization as a model pyrolysis bio-oil upgrading reaction. Physicochemical properties of Fe3O4/SiO2 catalysts were characterized by HRTEM, XAS, XPS, DRIFTS, TGA and porosimetry. Acid site densities were inversely proportional to Fe3O4 particle size, although acid strength and Lewis character were size invariant, and correlated with the specific activity for vapor phase acetic ketonization to acetone. A constant activation energy (~110 kJ.mol-1), turnover frequency (~13 h-1) and selectivity to acetone of 60 % were observed for ketonization across the catalyst series, implicating Fe3O4 as the principal active component of Red Mud waste

    Defective NADPH production in mitochondrial disease complex I causes inflammation and cell death

    Full text link
    Electron transport chain (ETC) defects occurring from mitochondrial disease mutations compromise ATP synthesis and render cells vulnerable to nutrient and oxidative stress conditions. This bioenergetic failure is thought to underlie pathologies associated with mitochondrial diseases. However, the precise metabolic processes resulting from a defective mitochondrial ETC that compromise cell viability under stress conditions are not entirely understood. We design a whole genome gain-of-function CRISPR activation screen using human mitochondrial disease complex I (CI) mutant cells to identify genes whose increased function rescue glucose restriction-induced cell death. The top hit of the screen is the cytosolic Malic Enzyme (ME1), that is sufficient to enable survival and proliferation of CI mutant cells under nutrient stress conditions. Unexpectedly, this metabolic rescue is independent of increased ATP synthesis through glycolysis or oxidative phosphorylation, but dependent on ME1-produced NADPH and glutathione (GSH). Survival upon nutrient stress or pentose phosphate pathway (PPP) inhibition depends on compensatory NADPH production through the mitochondrial one-carbon metabolism that is severely compromised in CI mutant cells. Importantly, this defective CI-dependent decrease in mitochondrial NADPH production pathway or genetic ablation of SHMT2 causes strong increases in inflammatory cytokine signatures associated with redox dependent induction of ASK1 and activation of stress kinases p38 and JNK. These studies find that a major defect of CI deficiencies is decreased mitochondrial one-carbon NADPH production that is associated with increased inflammation and cell death.This work was supported by the National Institute of Health, Grants RO1 CA181217 NCI, RO1 GM121452 NIGMS, and NIH 5 R01 DK089883-08 and Department of Defense CDMRP W81XWH-17-1-0216 to P.P. E.B. was supported in part by an EMBO postdoctoral fellowship and MDA Development Grant. E.A.P. was supported by NIHF30 (1F30DE028206-01A1). C.F.B was supported by F32GM125243. S.P.G. was supported by an NIH grant GM6794
    • …
    corecore