63 research outputs found

    Size and properties of the narrow-line region in Seyfert-2 galaxies from spatially-resolved optical spectroscopy

    Get PDF
    While [OIII] narrow-band imaging is commonly used to measure the size of the narrow-line regions (NLRs) in active galactic nuclei (AGNs), it can be contaminated by emission from surrounding starbursts. Recently, we have shown that long-slit spectroscopy provides a valuable alternative approach to probe the size in terms of AGN photoionisation. Moreover, several parameters of the NLR can be directly accessed. We here apply the same methods developed and described for the Seyfert-2 galaxy NGC1386 to study the NLR of five other Seyfert-2 galaxies by using high-sensitivity spatially-resolved optical spectroscopy obtained at the VLT and the NTT. We probe the AGN-photoionisation of the NLR and thus, its ``real'' size using diagnostic line-ratio diagrams.We derive physical properties of the NLR such as reddening, ionisation parameter, electron density, and velocity as a function of distance from the nucleus. For NGC5643, the diagnostic diagrams unveil a similar transition between line ratios falling in the AGN regime and those typical for HII regions as found for NGC1386, thus determining the size of the NLR. For the other four objects, all measured line ratios fall in the AGN regime. In almost all cases, both electron density and ionisation parameter decrease with radius. Deviations from this general behaviour (such as a secondary peak) seen in both the ionisation parameter and electron density can be interpreted as signs of shocks from the interaction of a radio jet and the NLR gas. In several objects, the gaseous velocity distribution is characteristic for rotational motion in an (inclined) emission-line disk in the centre. We compare our results to those of NGC1386 and show that the latter can be considered as prototypical also for this larger sample. We discuss our findings in detail for each object.Comment: 23 pages, 41 figures, accepted for publication in A&

    A Local Baseline of the Black Hole Mass Scaling Relations for Active Galaxies. I. Methodology and Results of Pilot Study

    Get PDF
    We present high-quality Keck/LRIS longslit spectroscopy of a pilot sample of 25 local active galaxies selected from the SDSS (0.0210^7 M_sun) to study the relations between black hole mass (MBH) and host-galaxy properties. We determine stellar kinematics of the host galaxy, deriving stellar-velocity dispersion profiles and rotation curves from three spectral regions (including CaH&K, MgIb triplet, and CaII triplet). In addition, we perform surface photometry on SDSS images, using a newly developed code for joint multi-band analysis. BH masses are estimated from the width of the Hbeta emission line and the host-galaxy free 5100A AGN luminosity. Combining results from spectroscopy and imaging allows us to study four MBH scaling relations: MBH-sigma, MBH-L(sph), MBH-M(sph,*), MBH-M(sph,dyn). We find the following results. First, stellar-velocity dispersions determined from aperture spectra (e.g. SDSS fiber spectra or unresolved data from distant galaxies) can be biased, depending on aperture size, AGN contamination, and host-galaxy morphology. However, such a bias cannot explain the offset seen in the MBH-sigma relation at higher redshifts. Second, while the CaT region is the cleanest to determine stellar-velocity dispersions, both the MgIb region, corrected for FeII emission, and the CaHK region, although often swamped by the AGN powerlaw continuum and emission lines, can give results accurate to within a few percent. Third, the MBH scaling relations of our pilot sample agree in slope and scatter with those of other local active and inactive galaxies. In the next papers of the series we will quantify the scaling relations, exploiting the full sample of ~100 objects.Comment: 28 pages, 19 figures. Final version, accepted for publication in The Astrophysical Journal (ApJ, 726, 59

    Searching for Mergers in Early-Type QSO Host Galaxies and a Control Sample of Inactive Ellipticals

    Full text link
    We present very deep HST/ACS images of five QSO host galaxies, classified as undisturbed ellipticals in earlier studies. For four of the five objects, our images reveal strong signs of interaction such as tidal tails, shells, and other fine structure, suggesting that a large fraction of QSO host galaxies may have experienced a relatively recent merger event. Our preliminary results for a control sample of inactive elliptical galaxies do not reveal comparable fine structure.Comment: 2 pages, 1 figure; To appear in the proceedings of IAU Symposium 245, "Formation and Evolution of Galaxy Bulges," M. Bureau, E. Athanassoula, and B. Barbuy, ed

    Evidence for Merger Remnants in Early-Type Host Galaxies of Low-Redshift QSOs

    Get PDF
    We present results from a pilot HST ACS deep imaging study in broad-band V of five low-redshift QSO host galaxies classified in the literature as ellipticals. The aim of our study is to determine whether these early-type hosts formed at high redshift and have since evolved passively, or whether they have undergone relatively recent mergers that may be related to the triggering of the nuclear activity. We perform two-dimensional modeling of the light distributions to analyze the host galaxies' morphology. We find that, while each host galaxy is reasonably well fitted by a de Vaucouleurs profile, the majority of them (4/5) reveal significant fine structure such as shells and tidal tails. These structures contribute between ~5% and 10% to the total V-band luminosity of each host galaxy within a region of r ~ 3 r_eff and are indicative of merger events that occurred between a few hundred Myr and a Gyr ago. These timescales are comparable to starburst ages in the QSO hosts previously inferred from Keck spectroscopy. Our results thus support a consistent scenario in which most of the QSO host galaxies suffered mergers with accompanying starbursts that likely also triggered the QSO activity in some way, but we are also left with considerable uncertainty on physical mechanisms that might have delayed this triggering for several hundred Myr after the merger.Comment: 22 pages, 4 figures. Accepted for publication in the Astrophysical Journa

    Spectacular Shells in the Host Galaxy of the QSO MC2 1635+119

    Get PDF
    We present deep HST/ACS images and Keck spectroscopy of MC2 1635+119, a QSO hosted by a galaxy previously classified as an undisturbed elliptical. Our new images reveal dramatic shell structure indicative of a merger event in the relatively recent past. The brightest shells in the central regions of the host are distributed alternately in radius, with at least two distinct shells on one side of the nucleus and three on the other, out to a distance of ~13 kpc. The light within the five shells comprises ~6% of the total galaxy light. Lower surface brightness ripples or tails and other debris extend out to a distance of ~65 kpc. A simple N-body model for a merger reproduces the inner shell structure and gives an estimate for the age of the merger between ~30 Myr and ~1.7 Gyr, depending on a range of reasonable assumptions. While the inner shell structure is suggestive of a minor merger, the total light contribution from the shells and extended structures are more indicative of a major merger. The spectrum of the host galaxy is dominated by a population of intermediate age (~1.4 Gyr), indicating a strong starburst episode that may have occurred at the time of the merger event. We speculate that the current QSO activity may have been triggered in the recent past by either a minor merger, or by debris from an older (~Gyr) major merger that is currently ``raining'' back into the central regions of the merger remnant.Comment: 14 pages, 5 figures. Accepted for publication in the Astrophysical Journa

    Cosmic Evolution of Black Holes and Spheroids. IV. The BH Mass - Spheroid Luminosity Relation

    Get PDF
    From high-resolution images of 23 Seyfert-1 galaxies at z=0.36 and z=0.57 obtained with the Near Infrared Camera and Multi-Object Spectrometer on board the Hubble Space Telescope (HST), we determine host-galaxy morphology, nuclear luminosity, total host-galaxy luminosity and spheroid luminosity. Keck spectroscopy is used to estimate black hole mass (M_BH). We study the cosmic evolution of the M_BH-spheroid luminosity (L_sph) relation. In combination with our previous work, totaling 40 Seyfert-1 galaxies, the covered range in BH mass is substantially increased, allowing us to determine for the first time intrinsic scatter and correct evolutionary trends for selection effects. We re-analyze archival HST images of 19 local reverberation-mapped active galaxies to match the procedure adopted at intermediate redshift. Correcting spheroid luminosity for passive luminosity evolution and taking into account selection effects, we determine that at fixed present-day V-band spheroid luminosity, M_BH/L_sph \propto (1+z)^(2.8+/-1.2). When including a sample of 44 quasars out to z=4.5 taken from the literature, with luminosity and BH mass corrected to a self-consistent calibration, we extend the BH mass range to over two orders of magnitude, resulting in M_BH/L_sph \propto (1+z)^(1.4+/-0.2). The intrinsic scatter of the relation, assumed constant with redshift, is 0.3+/-0.1 dex (<0.6 dex at 95% CL). The evolutionary trend suggests that BH growth precedes spheroid assembly. Interestingly, the M_BH-total host-galaxy luminosity relation is apparently non-evolving. It hints at either a more fundamental relation or that the spheroid grows by a redistribution of stars. However, the high-z sample does not follow this relation, indicating that major mergers may play the dominant role in growing spheroids above z~1.Comment: 39 pages, 11 figures. Accepted for publication in the Astrophysical Journa

    Comparing AGN broad- and narrow-line regions

    Full text link
    We compare recent HST observations of Seyfert and quasar NLRs and find that type-2 AGNs follow a relation consistent with that expected for a distribution of gas ionized by a central source R(NLR,2) \propto L^{0.32 +/- 0.05}, while type-1 objects are fit with a steeper slope of 0.55 +/- 0.05. The latter is comparable to the scaling found for the BLR size with continuum luminosity (slope: 0.5-0.7). Therefore, we investigate what we can learn about the BLR size if the NLR size is only determined by the AGN luminosity. We find that NLR and BLR size are related linearly following R(BLR) \propto R(NLR,1)^{0.88 +/- 0.1}. This relation can be used to estimate BH masses.Comment: 2 pages, 1 figure, to appear in the proceedings of "The Interplay among Black Holes, Stars and ISM in Galactic Nuclei", IAU 222, eds. Th. Storchi Bergmann, L.C. Ho, and H.R. Schmit

    A Search for H2O Megamasers in High-z Type-2 AGNs

    Full text link
    We report a search for H2O megamasers in 274 SDSS type-2 AGNs (0.3 < z < 0.83), half of which can be classified as type-2 QSOs from their [OIII] 5007 luminosity, using the Robert C. Byrd Green Bank Telescope (GBT) and the Effelsberg 100-m radio telescope. Apart from the detection of the extremely luminous water vapor megamaser SDSS J080430.99+360718.1, already reported by Barvainis & Antonucci (2005), we do not find any additional line emission. This high rate of non-detections is compared to the water maser luminosity function created from the 78 water maser galaxies known to date and its extrapolation towards the higher luminosities of "gigamasers" that we would have been able to detect given the sensitivity of our survey. The properties of the known water masers are summarized and discussed with respect to the nature of high-z type-2 AGNs and megamasers in general. In the appendix, we list 173 additional objects (mainly radio galaxies, but also QSOs and galaxies) that were observed with the GBT, the Effelsberg 100-m radio telescope, or Arecibo Observatory without leading to the detection of water maser emission.Comment: 28 pages, 3 figures. Accepted for publication in the Astrophysical Journa
    corecore