176 research outputs found

    Dust modelling and a dynamical study of comet 41P/Tuttle-Giacobini-Kresak during its 2017 perihelion passage

    Full text link
    Thanks to the Rosetta mission, our understanding of comets has greatly improved. A very good opportunity to apply this knowledge appeared in early 2017 with the appearance of the Jupiter family comet 41P/TGK. We performed an observational campaign with the TRAPPIST telescopes that covered almost the entire period of time when the comet was active. In this work we present a comprehensive study of the evolution of the dust environment of 41P based on observational data from January to July, 2017. Also, we performed numerical simulations to constrain its origin and dynamical nature. To model the observational data set we used a Monte Carlo dust tail model, which allowed us to derive the dust parameters that best describe its dust environment as a function of heliocentric distance. In order to study its dynamical evolution, we completed several experiments to evaluate the degree of stability of its orbit, its life time in its current region close to Earth, and its future behaviour. From the dust analysis, we found that comet 41P has a complex emission pattern that shifted from full isotropic to anisotropic ejection sometime during February 24-March 14 in 2017, and then from anisotropic to full isotropic again between June 7-28. During the anisotropic period, the emission was controlled by two strongly active areas, where one was located in the southern and one in the northern hemisphere of the nucleus. The total dust mass loss is estimated to be 7.5×108\sim7.5\times10^{8} kg. From the dynamical simulations we estimate that \sim3600 yr is the period of time during which 41P will remain in a similar orbit. Taking into account the estimated mass loss per orbit, after 3600 yr, the nucleus may lose about 30%\% of its mass. However, based on its observed dust-to-water mass ratio and its propensity to outbursts, the lifetime of this comet could be much shorter.Comment: 14 pages, 13 figures. Accepted for its publication in Astronomy & Astrophysic

    TRAPPIST bright comets production rates: C/2023 P1 (Nishimura), C/2023 E1 (ATLAS), C/2020 V2 (ZTF), C/2022 A2 (PANSTARRS), 103P/Hartley, 2P/Encke, and 12P/Pons-Brooks

    Full text link
    The authors report that they obtained from TRAPPIST-South and TRAPPIST-North robotic telescopes (Jehin et al. 2011) recent observations under clear skies using cometary HB narrowband filters (Farnham et al. 2000) for the following comets and computed preliminary production rates at 10.000 km using a Haser Model (Vp=Vd=1km/s) (Haser 1957)

    Study of the plutino object (208996) 2003 AZ84 from stellar occultations: size, shape and topographic features

    Full text link
    We present results derived from four stellar occultations by the plutino object (208996) 2003~AZ84_{84}, detected at January 8, 2011 (single-chord event), February 3, 2012 (multi-chord), December 2, 2013 (single-chord) and November 15, 2014 (multi-chord). Our observations rule out an oblate spheroid solution for 2003~AZ84_{84}'s shape. Instead, assuming hydrostatic equilibrium, we find that a Jacobi triaxial solution with semi axes (470±20)×(383±10)×(245±8)(470 \pm 20) \times (383 \pm 10) \times (245 \pm 8)~km % axis ratios b/a=0.82±0.05b/a= 0.82 \pm 0.05 and c/a=0.52±0.02c/a= 0.52 \pm 0.02, can better account for all our occultation observations. Combining these dimensions with the rotation period of the body (6.75~h) and the amplitude of its rotation light curve, we derive a density ρ=0.87±0.01\rho=0.87 \pm 0.01~g~cm3^{-3} a geometric albedo pV=0.097±0.009p_V= 0.097 \pm 0.009. A grazing chord observed during the 2014 occultation reveals a topographic feature along 2003~AZ84_{84}'s limb, that can be interpreted as an abrupt chasm of width 23\sim 23~km and depth >8> 8~km or a smooth depression of width 80\sim 80~km and depth 13\sim 13~km (or an intermediate feature between those two extremes)

    2I/Borisov: A C2 depleted interstellar comet

    Get PDF
    Aims. The discovery of the first active interstellar object 2I/Borisov provides an unprecedented opportunity to study planetary formation processes in another planetary system. In particular, spectroscopic observations of 2I allow us to constrain the composition of its nuclear ices. Methods. We obtained optical spectra of 2I with the 4.2 m William Herschel and 2.5 m Isaac Newton telescopes between 2019 September 30 and October 13, when the comet was between 2.5 au and 2.4 au from the Sun. We also imaged the comet with broadband filters on 15 nights from September 11 to October 17, as well as with a CN narrow-band filter on October 18 and 20, with the TRAPPIST-North telescope. Results. Broadband imaging confirms that the dust coma colours (B − V = 0.82 ± 0.02, V − R = 0.46 ± 0.03, R − I = 0.44 ± 0.03, B − R = 1.28 ± 0.03) are the same as for Solar System comets. We detect CN emission in all spectra and in the TRAPPIST narrow-band images with production rates between 1.6 × 1024 and 2.1 × 1024 molec/s. No other species are detected. We determine three-sigma upper limits for C2, C3, and OH production rates of 6 × 1023 molec/s, 2 × 1023 molec/s and 2 × 1027 molec/s, respectively, on October 02. There is no significant increase of the CN production rate or A(0)fρ during our observing period. Finally, we place a three-sigma upper limit on the Q(C2)/Q(CN) ratio of 0.3 (on October 13). From this, we conclude that 2I is highly depleted in C2, and may have a composition similar to Solar System carbon-chain depleted comets

    SPECULOOS: a network of robotic telescopes to hunt for terrestrial planets around the nearest ultracool dwarfs

    Full text link
    We present here SPECULOOS, a new exoplanet transit search based on a network of 1m-class robotic telescopes targeting the \sim1200 ultracool (spectral type M7 and later) dwarfs bright enough in the infrared (KK-mag 12.5\leq 12.5) to possibly enable the atmospheric characterization of temperate terrestrial planets with next-generation facilities like the James Webb Space Telescope\textit{James Webb Space Telescope}. The ultimate goals of the project are to reveal the frequency of temperate terrestrial planets around the lowest-mass stars and brown dwarfs, to probe the diversity of their bulk compositions, atmospheres and surface conditions, and to assess their potential habitability.Comment: 21 pages, 13 figures, 1 table. Proceedings of SPI

    Refining the transit-timing and photometric analysis of TRAPPIST-1: Masses, Radii, densities, dynamics, and ephemerides

    Get PDF
    We have collected transit times for the TRAPPIST-1 system with the Spitzer Space Telescope over four years. We add to these ground-based, HST and K2 transit time measurements, and revisit an N-body dynamical analysis of the seven-planet system using our complete set of times from which we refine the mass ratios of the planets to the star. We next carry out a photodynamical analysis of the Spitzer light curves to derive the density of the host star and the planet densities. We find that all seven planets' densities may be described with a single rocky mass-radius relation which is depleted in iron relative to Earth, with Fe 21 wt% versus 32 wt% for Earth, and otherwise Earth-like in composition. Alternatively, the planets may have an Earth-like composition, but enhanced in light elements, such as a surface water layer or a core-free structure with oxidized iron in the mantle. We measure planet masses to a precision of 3-5%, equivalent to a radial-velocity (RV) precision of 2.5 cm/sec, or two orders of magnitude more precise than current RV capabilities. We find the eccentricities of the planets are very small; the orbits are extremely coplanar; and the system is stable on 10 Myr timescales. We find evidence of infrequent timing outliers which we cannot explain with an eighth planet; we instead account for the outliers using a robust likelihood function. We forecast JWST timing observations, and speculate on possible implications of the planet densities for the formation, migration and evolution of the planet system

    The equilibrium shape of (65) Cybele: primordial or relic of a large impact?

    Get PDF
    Cybele asteroids constitute an appealing reservoir of primitive material genetically linked to the outer Solar System, and the physical properties of the largest members can be readily accessed by large telescopes. We took advantage of the bright apparition of (65) Cybele in July and August 2021 to acquire high-angular-resolution images and optical light curves of the asteroid with which we aim to analyse its shape and bulk properties. 7 series of images acquired with VLT/SPHERE were combined with optical light curves to reconstruct the shape of the asteroid using the ADAM, MPCD, and SAGE algorithms. The origin of the shape was investigated by means of N-body simulations. Cybele has a volume-equivalent diameter of 263+/-3km and a bulk density of 1.55+/-0.19g.cm-3. Notably, its shape and rotation state are closely compatible with those of a Maclaurin equilibrium figure. The lack of a collisional family associated with Cybele and the higher bulk density of that body with respect to other large P-type asteroids suggest that it never experienced any large disruptive impact followed by rapid re-accumulation. This would imply that its present-day shape represents the original one. However, numerical integration of the long-term dynamical evolution of a hypothetical family shows that it is dispersed by gravitational perturbations and chaotic diffusion over Gyrs of evolution. The very close match between Cybele and an equilibrium figure opens up the possibility that D>260km small bodies from the outer Solar System all formed at equilibrium. However, we cannot rule out an old impact as the origin of the equilibrium shape. Cybele itself is found to be dynamically unstable, implying that it was recently (<1Ga) placed on its current orbit either through slow diffusion from a relatively stable orbit in the Cybele region or, less likely, from an unstable, JFC orbit in the planet-crossing region.Comment: 19 pages, 14 figures, 4 tables, accepted for publication in A&
    corecore