9 research outputs found

    Recent hydrological variability and extreme precipitation events in Moroccan Middle-Atlas mountains: micro-scale analyses of lacustrine sediments

    No full text
    International audienceSince the 1990s, the Mediterranean basin undergoes an increase in precipitation events and extreme droughts likely to intensify in the XXI century, and whose origin is attributable to human activities since 1850 (IPCC, 2013). Regional climate models indicate a strengthening of flood episodes at the end of the XXI century in Morocco (Tramblay et al, 2012). To understand recent hydrological and paleohydrological variability in North Africa, our study focuses on the macro- and micro-scale analysis of sedimentary sequences from Lake Azigza (Moroccan Middle Atlas Mountains) covering the last few centuries. This lake is relevant since local site monitoring revealed that lake water table levels were correlated with precipitation regime (Adallal R., PhD Thesis in progress). The aim of our study is to distinguish sedimentary facies characteristic of low and high lake levels, in order to reconstruct past dry and wet periods during the last two hundred years. Here, we present results from sedimentological (lithology, grain size, microstructures under thin sections), geochemical (XRF) and physical (radiography) analyses on short sedimentary cores (64 cm long) taken into the deep basin of Lake Azigza (30 meters water depth). Cores have been dated (radionuclides 210Pb, 137Cs, and 14C dating). Two main facies were distinguished: one organic-rich facies composed of wood fragments, several reworked layers and characterized by Mn peaks; and a second facies composed of terrigenous clastic sediments, without wood nor reworked layers, and characterized by Fe, Ti, Si and K peaks. The first facies is interpreted as a high lake level stand. Indeed, the highest paleoshoreline is close to the vegetation, and steeper banks can increase the current velocity, allowing the transport of wood fragments in case of extreme precipitation events. Mn peaks are interpreted as Mn oxides precipitations under well-oxygenated deep waters after runoff events. The second facies is linked to periods of increased detrital input by incising sediments during low lake levels. This interpretation is supported by chronological jumps in this facies (incoherent old 14C ages). Finally, the presence of numerous anhydrous calcium sulfates in the recent low lake level facies supports the observation of a decreasing lake level for the last decades (Flower et al., 1989; Adallal R., PhD Thesis in progress). Our study demonstrates that several lake level changes occurred during the past two hundred years, and highlights the unprecedented lake level drop since the 1980s. Bibliography Flower, R.J., Stevenson, A.C., Dearing, J.A., Foster, I.D., Airey, A., Rippey, B.,Wilson, J.P.F. & Appleby, P.G. (1989). Catchment disturbance inferred from paleolimnological studies of three contrasted sub-humid environments in Morocco. J Paleolimnol 1: 293-322. IPCC, AR 5. Climate Change (2013). The physical Science Report. Tramblay, Y., Badi, W., Driouech, F., El Adlouni, S., Neppel, L. and Servat, E. 2012. Climate change impacts on extreme precipitation in Morocco. Global and Planetary Change 82-83: 104-114

    Recent hydrological variability and extreme precipitation events in Moroccan Middle-Atlas mountains: micro-scale analyses of lacustrine sediments

    No full text
    International audienceSince the 1990s, the Mediterranean basin undergoes an increase in precipitation events and extreme droughts likely to intensify in the XXI century, and whose origin is attributable to human activities since 1850 (IPCC, 2013). Regional climate models indicate a strengthening of flood episodes at the end of the XXI century in Morocco (Tramblay et al, 2012). To understand recent hydrological and paleohydrological variability in North Africa, our study focuses on the macro- and micro-scale analysis of sedimentary sequences from Lake Azigza (Moroccan Middle Atlas Mountains) covering the last few centuries. This lake is relevant since local site monitoring revealed that lake water table levels were correlated with precipitation regime (Adallal R., PhD Thesis in progress). The aim of our study is to distinguish sedimentary facies characteristic of low and high lake levels, in order to reconstruct past dry and wet periods during the last two hundred years. Here, we present results from sedimentological (lithology, grain size, microstructures under thin sections), geochemical (XRF) and physical (radiography) analyses on short sedimentary cores (64 cm long) taken into the deep basin of Lake Azigza (30 meters water depth). Cores have been dated (radionuclides 210Pb, 137Cs, and 14C dating). Two main facies were distinguished: one organic-rich facies composed of wood fragments, several reworked layers and characterized by Mn peaks; and a second facies composed of terrigenous clastic sediments, without wood nor reworked layers, and characterized by Fe, Ti, Si and K peaks. The first facies is interpreted as a high lake level stand. Indeed, the highest paleoshoreline is close to the vegetation, and steeper banks can increase the current velocity, allowing the transport of wood fragments in case of extreme precipitation events. Mn peaks are interpreted as Mn oxides precipitations under well-oxygenated deep waters after runoff events. The second facies is linked to periods of increased detrital input by incising sediments during low lake levels. This interpretation is supported by chronological jumps in this facies (incoherent old 14C ages). Finally, the presence of numerous anhydrous calcium sulfates in the recent low lake level facies supports the observation of a decreasing lake level for the last decades (Flower et al., 1989; Adallal R., PhD Thesis in progress). Our study demonstrates that several lake level changes occurred during the past two hundred years, and highlights the unprecedented lake level drop since the 1980s. Bibliography Flower, R.J., Stevenson, A.C., Dearing, J.A., Foster, I.D., Airey, A., Rippey, B.,Wilson, J.P.F. & Appleby, P.G. (1989). Catchment disturbance inferred from paleolimnological studies of three contrasted sub-humid environments in Morocco. J Paleolimnol 1: 293-322. IPCC, AR 5. Climate Change (2013). The physical Science Report. Tramblay, Y., Badi, W., Driouech, F., El Adlouni, S., Neppel, L. and Servat, E. 2012. Climate change impacts on extreme precipitation in Morocco. Global and Planetary Change 82-83: 104-114

    Recent hydrological variability and extreme precipitation events in Moroccan Middle-Atlas mountains: micro-scale analyses of lacustrine sediments

    No full text
    International audienceSince the 1990s, the Mediterranean basin undergoes an increase in precipitation events and extreme droughts likely to intensify in the XXI century, and whose origin is attributable to human activities since 1850 (IPCC, 2013). Regional climate models indicate a strengthening of flood episodes at the end of the XXI century in Morocco (Tramblay et al, 2012). To understand recent hydrological and paleohydrological variability in North Africa, our study focuses on the macro- and micro-scale analysis of sedimentary sequences from Lake Azigza (Moroccan Middle Atlas Mountains) covering the last few centuries. This lake is relevant since local site monitoring revealed that lake water table levels were correlated with precipitation regime (Adallal R., PhD Thesis in progress). The aim of our study is to distinguish sedimentary facies characteristic of low and high lake levels, in order to reconstruct past dry and wet periods during the last two hundred years. Here, we present results from sedimentological (lithology, grain size, microstructures under thin sections), geochemical (XRF) and physical (radiography) analyses on short sedimentary cores (64 cm long) taken into the deep basin of Lake Azigza (30 meters water depth). Cores have been dated (radionuclides 210Pb, 137Cs, and 14C dating). Two main facies were distinguished: one organic-rich facies composed of wood fragments, several reworked layers and characterized by Mn peaks; and a second facies composed of terrigenous clastic sediments, without wood nor reworked layers, and characterized by Fe, Ti, Si and K peaks. The first facies is interpreted as a high lake level stand. Indeed, the highest paleoshoreline is close to the vegetation, and steeper banks can increase the current velocity, allowing the transport of wood fragments in case of extreme precipitation events. Mn peaks are interpreted as Mn oxides precipitations under well-oxygenated deep waters after runoff events. The second facies is linked to periods of increased detrital input by incising sediments during low lake levels. This interpretation is supported by chronological jumps in this facies (incoherent old 14C ages). Finally, the presence of numerous anhydrous calcium sulfates in the recent low lake level facies supports the observation of a decreasing lake level for the last decades (Flower et al., 1989; Adallal R., PhD Thesis in progress). Our study demonstrates that several lake level changes occurred during the past two hundred years, and highlights the unprecedented lake level drop since the 1980s. Bibliography Flower, R.J., Stevenson, A.C., Dearing, J.A., Foster, I.D., Airey, A., Rippey, B.,Wilson, J.P.F. & Appleby, P.G. (1989). Catchment disturbance inferred from paleolimnological studies of three contrasted sub-humid environments in Morocco. J Paleolimnol 1: 293-322. IPCC, AR 5. Climate Change (2013). The physical Science Report. Tramblay, Y., Badi, W., Driouech, F., El Adlouni, S., Neppel, L. and Servat, E. 2012. Climate change impacts on extreme precipitation in Morocco. Global and Planetary Change 82-83: 104-114

    Recent hydrological variability and extreme precipitation events in Moroccan Middle-Atlas mountains: micro-scale analyses of lacustrine sediments

    No full text
    International audienceSince the 1990s, the Mediterranean basin undergoes an increase in precipitation events and extreme droughts likely to intensify in the XXI century, and whose origin is attributable to human activities since 1850 (IPCC, 2013). Regional climate models indicate a strengthening of flood episodes at the end of the XXI century in Morocco (Tramblay et al, 2012). To understand recent hydrological and paleohydrological variability in North Africa, our study focuses on the macro- and micro-scale analysis of sedimentary sequences from Lake Azigza (Moroccan Middle Atlas Mountains) covering the last few centuries. This lake is relevant since local site monitoring revealed that lake water table levels were correlated with precipitation regime (Adallal R., PhD Thesis in progress). The aim of our study is to distinguish sedimentary facies characteristic of low and high lake levels, in order to reconstruct past dry and wet periods during the last two hundred years. Here, we present results from sedimentological (lithology, grain size, microstructures under thin sections), geochemical (XRF) and physical (radiography) analyses on short sedimentary cores (64 cm long) taken into the deep basin of Lake Azigza (30 meters water depth). Cores have been dated (radionuclides 210Pb, 137Cs, and 14C dating). Two main facies were distinguished: one organic-rich facies composed of wood fragments, several reworked layers and characterized by Mn peaks; and a second facies composed of terrigenous clastic sediments, without wood nor reworked layers, and characterized by Fe, Ti, Si and K peaks. The first facies is interpreted as a high lake level stand. Indeed, the highest paleoshoreline is close to the vegetation, and steeper banks can increase the current velocity, allowing the transport of wood fragments in case of extreme precipitation events. Mn peaks are interpreted as Mn oxides precipitations under well-oxygenated deep waters after runoff events. The second facies is linked to periods of increased detrital input by incising sediments during low lake levels. This interpretation is supported by chronological jumps in this facies (incoherent old 14C ages). Finally, the presence of numerous anhydrous calcium sulfates in the recent low lake level facies supports the observation of a decreasing lake level for the last decades (Flower et al., 1989; Adallal R., PhD Thesis in progress). Our study demonstrates that several lake level changes occurred during the past two hundred years, and highlights the unprecedented lake level drop since the 1980s. Bibliography Flower, R.J., Stevenson, A.C., Dearing, J.A., Foster, I.D., Airey, A., Rippey, B.,Wilson, J.P.F. & Appleby, P.G. (1989). Catchment disturbance inferred from paleolimnological studies of three contrasted sub-humid environments in Morocco. J Paleolimnol 1: 293-322. IPCC, AR 5. Climate Change (2013). The physical Science Report. Tramblay, Y., Badi, W., Driouech, F., El Adlouni, S., Neppel, L. and Servat, E. 2012. Climate change impacts on extreme precipitation in Morocco. Global and Planetary Change 82-83: 104-114

    Recent hydrological variability and extreme precipitation events in Moroccan Middle-Atlas mountains: micro-scale analyses of lacustrine sediments

    No full text
    International audienceSince the 1990s, the Mediterranean basin undergoes an increase in precipitation events and extreme droughts likely to intensify in the XXI century, and whose origin is attributable to human activities since 1850 (IPCC, 2013). Regional climate models indicate a strengthening of flood episodes at the end of the XXI century in Morocco (Tramblay et al, 2012). To understand recent hydrological and paleohydrological variability in North Africa, our study focuses on the macro- and micro-scale analysis of sedimentary sequences from Lake Azigza (Moroccan Middle Atlas Mountains) covering the last few centuries. This lake is relevant since local site monitoring revealed that lake water table levels were correlated with precipitation regime (Adallal R., PhD Thesis in progress). The aim of our study is to distinguish sedimentary facies characteristic of low and high lake levels, in order to reconstruct past dry and wet periods during the last two hundred years. Here, we present results from sedimentological (lithology, grain size, microstructures under thin sections), geochemical (XRF) and physical (radiography) analyses on short sedimentary cores (64 cm long) taken into the deep basin of Lake Azigza (30 meters water depth). Cores have been dated (radionuclides 210Pb, 137Cs, and 14C dating). Two main facies were distinguished: one organic-rich facies composed of wood fragments, several reworked layers and characterized by Mn peaks; and a second facies composed of terrigenous clastic sediments, without wood nor reworked layers, and characterized by Fe, Ti, Si and K peaks. The first facies is interpreted as a high lake level stand. Indeed, the highest paleoshoreline is close to the vegetation, and steeper banks can increase the current velocity, allowing the transport of wood fragments in case of extreme precipitation events. Mn peaks are interpreted as Mn oxides precipitations under well-oxygenated deep waters after runoff events. The second facies is linked to periods of increased detrital input by incising sediments during low lake levels. This interpretation is supported by chronological jumps in this facies (incoherent old 14C ages). Finally, the presence of numerous anhydrous calcium sulfates in the recent low lake level facies supports the observation of a decreasing lake level for the last decades (Flower et al., 1989; Adallal R., PhD Thesis in progress). Our study demonstrates that several lake level changes occurred during the past two hundred years, and highlights the unprecedented lake level drop since the 1980s. Bibliography Flower, R.J., Stevenson, A.C., Dearing, J.A., Foster, I.D., Airey, A., Rippey, B.,Wilson, J.P.F. & Appleby, P.G. (1989). Catchment disturbance inferred from paleolimnological studies of three contrasted sub-humid environments in Morocco. J Paleolimnol 1: 293-322. IPCC, AR 5. Climate Change (2013). The physical Science Report. Tramblay, Y., Badi, W., Driouech, F., El Adlouni, S., Neppel, L. and Servat, E. 2012. Climate change impacts on extreme precipitation in Morocco. Global and Planetary Change 82-83: 104-114

    Past hydrological variability in the Moroccan Middle Atlas inferred from lakes and lacustrine sediments

    No full text
    International audienceThe challenge is to implement research that can estimate the consequences ofclimate changes in terms of impact on terrestrial environments and resources.Emphasis should be placed on regions dependent on natural resources and forwhich demographic pressure is strong. Simulations obtained from climate modelprojections (using different Representative Concentration Pathways (RCPs))predict that the Mediterranean basin and its southern periphery are particularlyvulnerable to water resources and environmental impact (IPCC, AR5, 2013).An annual rainfall decrease by 30% is found for the projection period 2070-2099(IPCC, AR5, 2013) associated with a decrease in water resources by 30 to 50%(Milano, 2012). In addition, several studies using regional atmospheric modelsindicate an increase in the precipitation inter-annual variability with extremeevents and a spatial heterogeneous signature, superimposed on a decrease in thetotal precipitation amount (Giorgi and Lionello, 2008; Raible et al. 2010).Currently, regional climate projections are highly sensitive to the climate modelused. In particular, spatial resolution as well as local climate conditions seemto impact significantly on the simulations (Jacob et al. 2014).The Mediterranean region, at the interface between arid and temperate climateswith several mountainous areas, is a complex climate system affected by theinteractions between mid-latitude and sub-tropical processes. In this context,Morocco, located at the transition between a temperate climate to the North anda tropical climate to the south constitutes a key area for an impact and sensitivitystudy to global climate changes. The climate is influenced by the Atlantic Ocean,the Mediterranean Sea and the Sahara, together with a very steep orography inthe Atlas region. The precipitation distribution is therefore characterised by greatspatial variability, and exhibits a marked seasonality, a strong inter-annualvariability (Ouda et al. 2005) and in general a pronounced gradient from northto south and west to east. At a broader scale, Morocco is located on the subtropicalsubsidence path and between the Acores High and the Saharan Low (Agoussine,2003). Several studies have also identified strong links with inter-annualprecipitation variability and NAO index (Knippertz, 2003) as well as remoteclimate modes (Esper et al. 2007).Continental climate variability at a local/regional scale, if it is to be integratedin climate predictions, needs to be supported by long-term observation.Meteorological stations in Morocco provide climatic data mainly for the last40 years with only a few stations located in the mountainous region (Tramblayet al. 2012; 2013; Driouech et al. 2010). This climate database is also supportedby the IAEA network providing stations for which isotope tracers have beenapplied to daily/monthly rain and water vapour samples over 2 to 3 years between2000 and 2004. Besides the poor coverage of instrumented areas, lacustrinesystems can provide a climatic data set that offers access to short and long-termtime series of climate parameters when knowledge of modern lake water balanceis combined with lacustrine sedimentary-climate records. Lake sediment recordsideally provide high resolution climate/environmental information of the last10,000 years (Magny et al. 2013). This time interval (corresponding to theHolocene) is a key period to investigate short and long-term climate variabilityand to improve prediction in a warming climate.In this study we present an integrated approach focusing on a mountainous lake(Aguelmam Azigza). The modern lake system study is based on site monitoring(2012-2016) and available regional hydro-climatic data. These data show thatlake level changes during the instrumented period were mainly driven byprecipitation following the high inter-annual variability. These data are thencompared with accurately dated short sediment cores retrieved in the same lake.Micro-scale geochemical and sedimentological analyses of these sequencesenable us to identify various sedimentary facies that can be linked with periodsof high (low) lake levels over the past decades

    Sub-chapter 1.1.3. Past hydrological variability in the Moroccan Middle Atlas inferred from lakes and lacustrine sediments

    No full text
    Introduction The challenge is to implement research that can estimate the consequences of climate changes in terms of impact on terrestrial environments and resources. Emphasis should be placed on regions dependent on natural resources and for which demographic pressure is strong. Simulations obtained from climate model projections (using different Representative Concentration Pathways (RCPs)) predict that the Mediterranean basin and its southern periphery are particularly vulnerable to water..

    The Mediterranean region under climate change

    No full text
    This book has been published by Allenvi (French National Alliance for Environmental Research) to coincide with the 22nd Conference of Parties to the United Nations Framework Convention on Climate Change (COP22) in Marrakesh. It is the outcome of work by academic researchers on both sides of the Mediterranean and provides a remarkable scientific review of the mechanisms of climate change and its impacts on the environment, the economy, health and Mediterranean societies. It will also be valuable in developing responses that draw on “scientific evidence” to address the issues of adaptation, resource conservation, solutions and risk prevention. Reflecting the full complexity of the Mediterranean environment, the book is a major scientific contribution to the climate issue, where various scientific considerations converge to break down the boundaries between disciplines
    corecore