234 research outputs found

    Social Identity and Preferences

    Get PDF
    Social identities prescribe behaviors for people. We identify the marginal behavioral effect of these norms on discount rates and risk aversion by measuring how laboratory subjects’ choices change when an aspect of social identity is made salient. When we make ethnic identity salient to Asian-American subjects, they make more patient choices. When we make racial identity salient to black subjects, non-immigrant blacks (but not immigrant blacks) make more patient choices. Making gender identity salient has no effect on intertemporal or risk choices.

    Tibia functionality and Division II female and male collegiate athletes from multiple sports

    Get PDF
    Background Bone strength is developed through a combination of the size and shape (architecture) of a bone as well as the bone’s material properties; and therefore, no one outcome variable can measure a positive or negative adaptation in bone. Skeletal robusticity (total area/ bone length) a measure of bones external size varies within the population and is independent of body size, but robusticity has been associated with bone strength. Athletes may have similar variability in robusticity values as the general population and thus have a wide range of bone strengths based on the robustness of their bones. Therefore, the purpose of this study was to determine if an athlete’s bone strength and cortical area relative to body size was dependent on robusticity. The second aim was to determine if anthropometry or muscle function measurements were associated with bone robusticity. Methods Bone variables contributing to bone strength were measured in collegiate athletes and a reference group using peripheral quantitative computed tomography (pQCT) at the 50% tibial site. Bone functionality was assessed by plotting bone strength and cortical area vs body size (body weight x tibial length) and robustness (total area/length) vs body size. Bone strength was measured using the polar strength-strain index (SSIp). Based on the residuals from the regression, an athlete’s individual functionality was determined, and two groups were formed “weaker for size” (WS) and “stronger for size” (SS). Grip strength, leg extensor strength and lower body power were also measured. Results Division II athletes exhibited a natural variation in (SSIp) relative to robusticity consistent with previous studies. Bone strength (SSIp) was dependent on the robusticity of the tibia. The bone traits that comprise bone strength (SSIp) were significantly different between the SS and WS groups, yet there were minimal differences in the anthropometric data and muscle function measures between groups. A lower percentage of athletes from ball sports were “weaker for size” (WS group) and a higher percentage of swimmers were in the WS group. Discussion A range of strength values based on robusticity occurs in athletes similar to general populations. Bones with lower robusticity (slender) were constructed with less bone tissue and had less strength. The athletes with slender bones were from all sports including track and field and ball sports but the majority were swimmers. Conclusions Athletes, even after optimal training for their sport, may have weaker bones based on robusticity. Slender bones may therefore be at a higher risk for fracture under extreme loading events but also yield benefits to some athletes (swimmers) due to their lower bone mass

    Concert recording 2019-04-05

    Get PDF
    [Track 1]. Concerto for bass trombone and band. I. Allegro con energico [Track 2]. II. Adagio molto [Track 3]. III. Allegro molto vivace / Derek Bourgeois -- [Track 4]. Piano prelude no. 2 Blue lullaby / George Gershwin -- [Track 5]. New Orleans / Eugene Bozza -- [Tracks 6-9]. 1+5 / Frigyes Hidas -- [Track 10]. There will never be another you / Harry Warren -- [Track 11]. Devil\u27s waltz / Steven Verhelst

    Build your own virtual photonics communication system: a Photonics Simulator for high school students

    Get PDF
    In our community outreach activities, we have been developing teaching tools to inform high school students about Optics and Photonics. While there is research supporting the idea that incorporating computer games into education can create a ‘strong cognitive effect’, others suggest that games should merely be used as a teaching tool, rather than as a primary vehicle for teaching. Thus we chose to develop an open-ended Photonics Simulator using Flash, employing photonic components as building blocks to form a communications system, within a classroom lesson including an illustrated talk with a simple optical fibre demonstration. The virtual photonics components have the same properties as the devices used in actual telecommunications links and in our research laboratories. The software is available to download. We trialled the Photonics Simulator during a single lesson (lessons ranged from 50 minutes to 90 minutes) with five Year 9 or Year 10 classes (from three schools - coeducational, girls only and boys only) during 2007. We gave them a short survey before the lesson to establish their level of knowledge of photonics, and then administered a slightly longer survey, including some repeated questions, after the lesson. The level of knowledge of photonics was significantly improved in every class and in every subgroup tested. (For example answers on ‘the function of an optical amplifier’ improved from 40% correct/partly correct to 70% correct/partly correct). Furthermore, the ‘hands-on’ nature of the simulator was effective in engaging the students, (94% ‘enjoyed playing the game’) and showing them the basis of the communications systems that underpin the Internet

    Measurement error in a multi-level analysis of air pollution and health: a simulation study.

    Get PDF
    BACKGROUND: Spatio-temporal models are increasingly being used to predict exposure to ambient outdoor air pollution at high spatial resolution for inclusion in epidemiological analyses of air pollution and health. Measurement error in these predictions can nevertheless have impacts on health effect estimation. Using statistical simulation we aim to investigate the effects of such error within a multi-level model analysis of long and short-term pollutant exposure and health. METHODS: Our study was based on a theoretical sample of 1000 geographical sites within Greater London. Simulations of "true" site-specific daily mean and 5-year mean NO2 and PM10 concentrations, incorporating both temporal variation and spatial covariance, were informed by an analysis of daily measurements over the period 2009-2013 from fixed location urban background monitors in the London area. In the context of a multi-level single-pollutant Poisson regression analysis of mortality, we investigated scenarios in which we specified: the Pearson correlation between modelled and "true" data and the ratio of their variances (model versus "true") and assumed these parameters were the same spatially and temporally. RESULTS: In general, health effect estimates associated with both long and short-term exposure were biased towards the null with the level of bias increasing to over 60% as the correlation coefficient decreased from 0.9 to 0.5 and the variance ratio increased from 0.5 to 2. However, for a combination of high correlation (0.9) and small variance ratio (0.5) non-trivial bias (> 25%) away from the null was observed. Standard errors of health effect estimates, though unaffected by changes in the correlation coefficient, appeared to be attenuated for variance ratios > 1 but inflated for variance ratios < 1. CONCLUSION: While our findings suggest that in most cases modelling errors result in attenuation of the effect estimate towards the null, in some situations a non-trivial bias away from the null may occur. The magnitude and direction of bias appears to depend on the relationship between modelled and "true" data in terms of their correlation and the ratio of their variances. These factors should be taken into account when assessing the validity of modelled air pollution predictions for use in complex epidemiological models

    A Detailed Record of Shallow Hydrothermal Fluid Flow in the Sierra Nevada Magmatic Arc from Low-δ18O Skarn Garnets

    Get PDF
    Garnet from skarns exposed at Empire Mountain, Sierra Nevada (California, United States) batholith, have variable δ18O values including the lowest known δ18O values of skarn garnet (–4.0‰) in North America. Such values indicate that surface-derived meteoric water was a significant component of the fluid budget of the skarn-forming hydrothermal system, which developed in response to shallow emplacement (∼3.3 km) of the 109 Ma quartz diorite of Empire Mountain. Values of δ18O, measured in situ across single garnet crystals by secondary ion mass spectrometry, vary considerably (up to 7‰) and sometimes abruptly, indicating variable mixing of meteoric, magmatic, and metamorphic water. Brecciation in the skarns and alteration of the Empire Mountain pluton suggests that fracture-enhanced permeability was a critical control on the depth to which surface waters penetrated to form skarns and later alter the pluton. Compared to other Sierran systems, much greater volumes of skarn rock suggest an exceptionally vigorous hydrothermal system that saw unusually high levels of decarbonation reaction progress, likely a consequence of the magma intruding relatively cold wallrocks inboard of the main locus of magmatism in the Sierran arc at that time

    The Persistence of Cool Galactic Winds in High Stellar Mass Galaxies Between z~1.4 and ~1

    Full text link
    We present an analysis of the MgII 2796, 2803 and FeII 2586, 2600 absorption line profiles in coadded spectra of 468 galaxies at 0.7 < z < 1.5. The galaxy sample, drawn from the Team Keck Treasury Redshift Survey of the GOODS-N field, has a range in stellar mass (M_*) comparable to that of the sample at z~1.4 analyzed in a similar manner by Weiner et al. (2009; W09), but extends to lower redshifts and has specific star formation rates which are lower by ~0.6 dex. We identify outflows of cool gas from the Doppler shift of the MgII absorption lines and find that the equivalent width (EW) of absorption due to outflowing gas increases on average with M_* and star formation rate (SFR). We attribute the large EWs measured in spectra of the more massive, higher-SFR galaxies to optically thick absorbing clouds having large velocity widths. The outflows have hydrogen column densities N(H) > 10^19.3 cm^-2, and extend to velocities of ~500 km/s. While galaxies with SFR > 10 Msun/yr host strong outflows in both this and the W09 sample, we do not detect outflows in lower-SFR (i.e., log M_*/Msun < 10.5) galaxies at lower redshifts. Using a simple galaxy evolution model which assumes exponentially declining SFRs, we infer that strong outflows persist in galaxies with log M_*/Msun > 10.5 as they age between z=1.4 and z~1, presumably because of their high absolute SFRs. Finally, using high resolution HST/ACS imaging in tandem with our spectral analysis, we find evidence for a weak trend (at 1 sigma significance) of increasing outflow absorption strength with increasing galaxy SFR surface density.Comment: Submitted to ApJ. 25 pages, 19 figures, Figure 2 reduced in resolution. Uses emulateapj forma

    Stationary models for the extra-planar gas in disc galaxies

    Full text link
    The kinematics of the extra-planar neutral and ionised gas in disc galaxies shows a systematic decline of the rotational velocity with height from the plane (vertical gradient). This feature is not expected for a barotropic gas, whilst it is well reproduced by baroclinic fluid homogeneous models. The problem with the latter is that they require gas temperatures (above 10510^5 K) much higher than the temperatures of the cold and warm components of the extra-planar gas layer. In this paper, we attempt to overcome this problem by describing the extra-planar gas as a system of gas clouds obeying the Jeans equations. In particular, we consider models having the observed extra-planar gas distribution and gravitational potential of the disc galaxy NGC 891: for each model we construct pseudo-data cubes and we compare them with the HI data cube of NGC 891. In all cases the rotational velocity gradients are in qualitative agreement with the observations, but the synthetic and the observed data cubes of NGC 891 show systematic differences that cannot be accommodated by any of the explored models. We conclude that the extra-planar gas in disc galaxies cannot be satisfactorily described by a stationary Jeans-like system of gas clouds.Comment: 14 pages, 7 figures, accepted for pubblication in MNRA

    A thin layer of phytoplankton observed in the Philippine Sea with a synthetic moored array of autonomous gliders

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C10020, doi:10.1029/2009JC005317.A synthetic moored array composed of five buoyancy-propelled autonomous underwater gliders was used to characterize mesoscale variability and phytoplankton distribution in a 100 km × 100 km domain in the Philippine Sea east of Luzon Strait for 10 days in May 2004. The study area, located east of the Kuroshio near the subtropical front, is dominated by strong internal tides, by energetic westward-propagating mesoscale eddies with azimuthal velocities exceeding 50 cm/s, and by a deep (130 m) maximum in chlorophyll fluorescence. Each glider in the array was instructed to maintain geographic position while repeatedly profiling to 200-m depth. Good station-keeping performance enabled the resulting series of vertical profiles to be interpreted in the same manner as a physically moored chain of instruments. Although organized primarily as a demonstration of glider capabilities, this field exercise provides a unique data set for examining biological-physical interactions in the open ocean. Here we report on the evolution of a thin layer of phytoplankton observed near the deep chlorophyll maximum. Coincident observations of fine structure in temperature and salinity suggest that the thinning process of this layer was driven primarily by physical forcing, most probably vertical shear associated with energetic diurnal internal waves, as opposed to a biological mechanism, such as convergent swimming, grazing, or spatial variation in growth rate.The Office of Naval Research provided support for fieldwork and analysis through grants N-00014-00-1-0256 and N-00014-05-1-0367
    corecore