148 research outputs found
Mitochondrial DNA Manipulations Affect Tau Oligomerization
Background:Mitochondrial dysfunction and tau aggregation occur in Alzheimerâs disease (AD), and exposing cells or rodents to mitochondrial toxins alters their tau. Objective:To further explore how mitochondria influence tau, we measured tau oligomer levels in human neuronal SH-SY5Y cells with different mitochondrial DNA (mtDNA) manipulations. Methods:Specifically, we analyzed cells undergoing ethidium bromide-induced acute mtDNA depletion, Ï0 cells with chronic mtDNA depletion, and cytoplasmic hybrid (cybrid) cell lines containing mtDNA from AD subjects. Results:We found cytochrome oxidase activity was particularly sensitive to acute mtDNA depletion, evidence of metabolic re-programming in the Ï0 cells, and a relatively reduced mtDNA content in cybrids generated through AD subject mitochondrial transfer. In each case tau oligomer levels increased, and acutely depleted and AD cybrid cells also showed a monomer to oligomer shift. Conclusion:We conclude a cellâs mtDNA affects tau oligomerization. Overlapping tau changes across three mtDNA-manipulated models establishes the reproducibility of the phenomenon, and its presence in AD cybrids supports its AD-relevance
The Banff 2019 Kidney Meeting Report (I): Updates on and clarification of criteria for T cellâ and antibody-mediated rejection
The XV. Banff conference for allograft pathology was held in conjunction with the annual meeting of the American Society for Histocompatibility and Immunogenetics in Pittsburgh, PA (USA) and focused on refining recent updates to the classification, advances from the Banff working groups, and standardization of molecular diagnostics. This report on kidney transplant pathology details clarifications and refinements to the criteria for chronic active (CA) T cellâmediated rejection (TCMR), borderline, and antibody-mediated rejection (ABMR). The main focus of kidney sessions was on how to address biopsies meeting criteria for CA TCMR plus borderline or acute TCMR. Recent studies on the clinical impact of borderline infiltrates were also presented to clarify whether the threshold for interstitial inflammation in diagnosis of borderline should be i0 or i1. Sessions on ABMR focused on biopsies showing microvascular inflammation in the absence of C4d staining or detectable donor-specific antibodies; the potential value of molecular diagnostics in such cases and recommendations for use of the latter in the setting of solid organ transplantation are presented in the accompanying meeting report. Finally, several speakers discussed the capabilities of artificial intelligence and the potential for use of machine learning algorithms in diagnosis and personalized therapeutics in solid organ transplantation
The Brain Tumor Segmentation (BraTS) Challenge 2023: Focus on Pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs)
Pediatric tumors of the central nervous system are the most common cause of
cancer-related death in children. The five-year survival rate for high-grade
gliomas in children is less than 20\%. Due to their rarity, the diagnosis of
these entities is often delayed, their treatment is mainly based on historic
treatment concepts, and clinical trials require multi-institutional
collaborations. The MICCAI Brain Tumor Segmentation (BraTS) Challenge is a
landmark community benchmark event with a successful history of 12 years of
resource creation for the segmentation and analysis of adult glioma. Here we
present the CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge, which
represents the first BraTS challenge focused on pediatric brain tumors with
data acquired across multiple international consortia dedicated to pediatric
neuro-oncology and clinical trials. The BraTS-PEDs 2023 challenge focuses on
benchmarking the development of volumentric segmentation algorithms for
pediatric brain glioma through standardized quantitative performance evaluation
metrics utilized across the BraTS 2023 cluster of challenges. Models gaining
knowledge from the BraTS-PEDs multi-parametric structural MRI (mpMRI) training
data will be evaluated on separate validation and unseen test mpMRI dataof
high-grade pediatric glioma. The CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023
challenge brings together clinicians and AI/imaging scientists to lead to
faster development of automated segmentation techniques that could benefit
clinical trials, and ultimately the care of children with brain tumors
Recommended from our members
The bii4africa dataset of faunal and floral population intactness estimates across Africaâs major land uses
Sub-Saharan Africa is under-represented in global biodiversity datasets, particularly regarding the impact of land use on speciesâ population abundances. Drawing on recent advances in expert elicitation to ensure data consistency, 200 experts were convened using a modified-Delphi process to estimate âintactness scoresâ: the remaining proportion of an âintactâ reference population of a species group in a particular land use, on a scale from 0 (no remaining individuals) to 1 (same abundance as the reference) and, in rare cases, to 2 (populations that thrive in human-modified landscapes). The resulting bii4africa dataset contains intactness scores representing terrestrial vertebrates (tetrapods: ±5,400 amphibians, reptiles, birds, mammals) and vascular plants (±45,000 forbs, graminoids, trees, shrubs) in sub-Saharan Africa across the regionâs major land uses (urban, cropland, rangeland, plantation, protected, etc.) and intensities (e.g., large-scale vs smallholder cropland). This dataset was co-produced as part of the Biodiversity Intactness Index for Africa Project. Additional uses include assessing ecosystem condition; rectifying geographic/ taxonomic biases in global biodiversity indicators and maps; and informing the Red List of Ecosystems
Haematological consequences of acute uncomplicated falciparum malaria: a WorldWide Antimalarial Resistance Network pooled analysis of individual patient data
Background: Plasmodium falciparum malaria is associated with anaemia-related morbidity, attributable to host, parasite and drug factors. We quantified the haematological response following treatment of uncomplicated P. falciparum malaria to identify the factors associated with malarial anaemia.
Methods: Individual patient data from eligible antimalarial efficacy studies of uncomplicated P. falciparum malaria, available through the WorldWide Antimalarial Resistance Network data repository prior to August 2015, were pooled using standardised methodology. The haematological response over time was quantified using a multivariable linear mixed effects model with nonlinear terms for time, and the model was then used to estimate the mean haemoglobin at day of nadir and day 7. Multivariable logistic regression quantified risk factors for moderately severe anaemia (haemoglobin < 7 g/dL) at day 0, day 3 and day 7 as well as a fractional fall â„ 25% at day 3 and day 7.
Results: A total of 70,226 patients, recruited into 200 studies between 1991 and 2013, were included in the analysis: 50,859 (72.4%) enrolled in Africa, 18,451 (26.3%) in Asia and 916 (1.3%) in South America. The median haemoglobin concentration at presentation was 9.9 g/dL (range 5.0â19.7 g/dL) in Africa, 11.6 g/dL (range 5.0â20.0 g/dL) in Asia and 12.3 g/dL (range 6.9â17.9 g/dL) in South America. Moderately severe anaemia (Hb < 7g/dl) was present in 8.4% (4284/50,859) of patients from Africa, 3.3% (606/18,451) from Asia and 0.1% (1/916) from South America. The nadir haemoglobin occurred on day 2 post treatment with a mean fall from baseline of 0.57 g/dL in Africa and 1.13 g/dL in Asia. Independent risk factors for moderately severe anaemia on day 7, in both Africa and Asia, included moderately severe anaemia at baseline (adjusted odds ratio (AOR) = 16.10 and AOR = 23.00, respectively), young age (age < 1 compared to â„ 12 years AOR = 12.81 and AOR = 6.79, respectively), high parasitaemia (AOR = 1.78 and AOR = 1.58, respectively) and delayed parasite clearance (AOR = 2.44 and AOR = 2.59, respectively). In Asia, patients treated with an artemisinin-based regimen were at significantly greater risk of moderately severe anaemia on day 7 compared to those treated with a non-artemisinin-based regimen (AOR = 2.06 [95%CI 1.39â3.05], p < 0.001).
Conclusions: In patients with uncomplicated P. falciparum malaria, the nadir haemoglobin occurs 2 days after starting treatment. Although artemisinin-based treatments increase the rate of parasite clearance, in Asia they are associated with a greater risk of anaemia during recovery
The bii4africa dataset of faunal and floral population intactness estimates across Africaâs major land uses
Sub-Saharan Africa is under-represented in global biodiversity datasets, particularly regarding the impact of land use on speciesâ population abundances. Drawing on recent advances in expert elicitation to ensure data consistency, 200 experts were convened using a modified-Delphi process to estimate âintactness scoresâ: the remaining proportion of an âintactâ reference population of a species group in a particular land use, on a scale from 0 (no remaining individuals) to 1 (same abundance as the reference) and, in rare cases, to 2 (populations that thrive in human-modified landscapes). The resulting bii4africa dataset contains intactness scores representing terrestrial vertebrates (tetrapods: ±5,400 amphibians, reptiles, birds, mammals) and vascular plants (±45,000 forbs, graminoids, trees, shrubs) in sub-Saharan Africa across the regionâs major land uses (urban, cropland, rangeland, plantation, protected, etc.) and intensities (e.g., large-scale vs smallholder cropland). This dataset was co-produced as part of the Biodiversity Intactness Index for Africa Project. Additional uses include assessing ecosystem condition; rectifying geographic/taxonomic biases in global biodiversity indicators and maps; and informing the Red List of Ecosystems
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
Continuous cerebral blood flow monitoring: What should we do with these extra numbers?
Summary: NeoDoppler is a noninvasive monitoring device that can be attached to a patient's head to provide real-time continuous cerebral Doppler evaluation. A feasibility study shows that it can be used in operating theatres during anaesthesia to potentially guide haemodynamic management. We discuss the impact of this new device and which further research would be necessary to find its role in clinical practice
- âŠ