12 research outputs found

    Cobalt-based molecular electrocatalysis of nitrile reduction: evolving sustainability beyond hydrogen

    Get PDF
    Two new cobalt bis-iminopyridines, [Co(DDP)(H2O)2](NO3)2 (1, DDP = cis-[1,3-bis(2-pyridinylenamine)] cyclohexane) and [Co(cis-DDOP)(NO3)](NO3) (2, cis-DDOP = cis-3,5-bis[(2- Pyridinyleneamin]-trans-hydroxycyclohexane) electrocatalyse the 4-proton, 4-electron reduction of acetonitrile to ethylamine. For 1, this reduction occurs in preference to reduction of protons to H2. A coordinating hydroxyl proton relay in 2 reduces the yield of ethylamine and biases the catalytic system back towards H2

    Unravelling the mechanistic complexity of the oxygen evolution reaction and Ir dissolution in highly dimensional amorphous hydrous iridium oxides†

    Get PDF
    Understanding the oxygen evolution reaction (OER) and Ir dissolution mechanisms in amorphous, hydrous iridium oxides (am-hydr-IrOx) is hindered by the reliance on crystalline iridium oxide theoretical models to interpret its behaviour. This study presents a comprehensive investigation of hydrous iridium oxide thin films (HIROFs) as a model for am-hydr-IrOx to elucidate electronic and structural transformations under OER conditions of proton exchange membrane water electrolyzers (PEM-WE). Employing in situ and operando Ir L3-edge X-ray absorption spectroscopy supported by density functional theory calculations, we introduce a novel surface H-terminated nanosheet model that better characterizes the short-range structure of am-hydr-IrOx compared to previous crystalline models, which exhibits elongated Ir–O bond lengths compared to rutile-IrO2. This atomic model unveils the electronic and structural transformations of am-hydr-IrOx, progressing from H-terminated nanosheets to structures with multiple Ir vacancies and shorter bond-lengths at OER potentials. Notably, Ir dissolution emerges as a spontaneous, thermodynamically driven process, initiated at potentials lower than OER activation, which requires a parallel mechanistic framework describing Ir dissolution by Ir defect formation. Moreover, our results provide mechanistic insights into the activity-stability relationship of am-hydr-IrOx by systematically screening the DFT-calculated OER activity of diverse Ir and O chemical environments. This work challenges conventional perceptions of iridium dissolution and OER mechanisms in am-hydr-IrOx, providing an alternative perspective within a dual-mechanistic framework.Alternative atomistic model describing OER and Ir dissolution in amorphous, hydrous iridium oxides derived from synchrotron-based X-ray spectroscopies and DFT.Bundesministerium für Bildung und Forschung 10.13039/501100002347Helmholtz Energy Materials Foundry 10.13039/50110001560

    Correlating Orbital Composition and Activity of LaMnxNi1-xO3 Nanostructures Towards Oxygen Electrocatalysis

    Get PDF
    The atomistic rationalization of the activity of transition metal oxides towards oxygen electrocatalysis is one of the most complex challenges in the field of electrochemical energy conversion. Transition metal oxides exhibit a wide range of structural and electronic properties, which are acutely dependent on composition and crystal structure. So far, identifying one or several properties of transition metal oxides as descriptors for oxygen electrocatalysis remains elusive. In this work, we performed a detailed experimental and computational study of LaMnxNi1-xO3 perovskites nanostructures, establishing an unprecedented correlation between electrocatalytic activity and orbital composition. The composition and structure of the single-phase rhombohedral oxide nanostructures are characterized by a variety of techniques, including X-ray diffraction, X-ray absorption spectroscopy, X-ray photoelectron spectroscopy and electron microscopy. Systematic electrochemical analysis of pseudocapacitive responses in the potential region relevant to oxygen electrocatalysis shows the evolution of Mn and Ni d-orbitals as a function of the perovskite composition. We rationalize these observations on the basis of electronic structure calculations employing DFT with HSE06 hybrid functional. Our analysis clearly shows a linear correlation between the OER kinetics and the integrated density of states (DOS) associated with Ni and Mn 3d states in the energy range relevant to operational conditions. On the other hand, the ORR kinetics exhibits a second-order reaction with respect to the electron density in Mn and Ni 3d states. For the first time, our study identifies the relevant DOS dominating both reactions and the importance of understanding orbital occupancy under operational conditions

    Activating Mn Sites by Ni Replacement in α-MnO2

    No full text
    Transition metal oxides are characterized by an acute structure and composition dependent electrocatalytic activity towards the oxygen evolution (OER) and oxygen reduction (ORR) reactions. For instance, Mn containing oxides are among the most active ORR catalysts, while Ni based compounds tend to show high activity towards the OER in alkaline solutions. In this study, we show that incorporation of Ni into α-MnO2, by adding Ni precursor into the Mn-containing hydrothermal solution, can generate distinctive sites with different electronic configuration and contrasting electrocatalytic activity. The structure and composition of the Ni modified Hollandite α-MnO2 phase were investigated by X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), transmission electron microscopy coupled to energy-dispersive X-ray spectroscopy (TEM-EDX), inductively coupled plasma – optical emission spectroscopy (ICP-OES), and X-ray photoelectron spectroscopy (XPS). Our analysis suggests that Mn replacement by Ni into the α-MnO2 lattice (site A) occurs up to approximately 5 % of the total Mn content, while further increasing Ni content promotes the nucleation of separate Ni phases (site B). XAS and XRD shows that the introduction of sites A and B have negligible effect on the overall Mn oxidation state and bonding characteristics, while very subtle changes in the XPS spectra appears to suggest changes in the electronic configuration upon Ni incorporation into the α-MnO2 lattice. On the other hand, changes in the electronic structure promoted by site A have a significant impact in the pseudocapacitive responses obtained by cyclic voltammetry in KOH solution at pH 14, revealing the appearance of Mn 3d orbitals at the energy (potential) range relevant to the ORR. The evolution of Mn 3d upon Ni replacement significantly increases the catalytic activity of α-MnO2 towards the ORR. Interestingly, the formation of segregated Ni phases (site B) leads to a decrease in the ORR activity, while increasing OER rate

    Cobalt-based molecular electrocatalysis of nitrile reduction: evolving sustainability beyond hydrogen

    No full text
    Two new cobalt bis-iminopyridines, [Co(DDP)(H2O)2](NO3)2 (1, DDP = cis-[1,3-bis(2-pyridinylenamine)] cyclohexane) and [Co(cis-DDOP)(NO3)](NO3) (2, cis-DDOP = cis-3,5-bis[(2- Pyridinyleneamin]-trans-hydroxycyclohexane) electrocatalyse the 4-proton, 4-electron reduction of acetonitrile to ethylamine. For 1, this reduction occurs in preference to reduction of protons to H2. A coordinating hydroxyl proton relay in 2 reduces the yield of ethylamine and biases the catalytic system back towards H2

    Cobalt-based molecular electrocatalysis of nitrile reduction: evolving sustainability beyond hydrogen

    No full text
    Two complexes, designed as hydrogen evolution catalysts, are shown to be the first earth-abundant molecular electrocatalysts for reduction of acetonitrile to ethylamine.</p

    Correlating Orbital Composition and Activity of LaMn<sub><i>x</i></sub>Ni<sub>1–<i>x</i></sub>O<sub>3</sub> Nanostructures toward Oxygen Electrocatalysis

    No full text
    The atomistic rationalization of the activity of transition metal oxides toward oxygen electrocatalysis is one of the most complex challenges in the field of electrochemical energy conversion. Transition metal oxides exhibit a wide range of structural and electronic properties, which are acutely dependent on composition and crystal structure. So far, identifying one or several properties of transition metal oxides as descriptors for oxygen electrocatalysis remains elusive. In this work, we performed a detailed experimental and computational study of LaMnxNi1–xO3 perovskite nanostructures, establishing an unprecedented correlation between electrocatalytic activity and orbital composition. The composition and structure of the single-phase rhombohedral oxide nanostructures are characterized by a variety of techniques, including X-ray diffraction, X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and electron microscopy. Systematic electrochemical analysis of pseudocapacitive responses in the potential region relevant to oxygen electrocatalysis shows the evolution of Mn and Ni d-orbitals as a function of the perovskite composition. We rationalize these observations on the basis of electronic structure calculations employing DFT with HSE06 hybrid functional. Our analysis clearly shows a linear correlation between the OER kinetics and the integrated density of states (DOS) associated with Ni and Mn 3d states in the energy range relevant to operational conditions. In contrast, the ORR kinetics exhibits a second-order reaction with respect to the electron density in Mn and Ni 3d states. For the first time, our study identifies the relevant DOS dominating both reactions and the importance of understanding orbital occupancy under operational conditions

    Correlating Orbital Composition and Activity of LaMn<sub><i>x</i></sub>Ni<sub>1–<i>x</i></sub>O<sub>3</sub> Nanostructures toward Oxygen Electrocatalysis

    No full text
    The atomistic rationalization of the activity of transition metal oxides toward oxygen electrocatalysis is one of the most complex challenges in the field of electrochemical energy conversion. Transition metal oxides exhibit a wide range of structural and electronic properties, which are acutely dependent on composition and crystal structure. So far, identifying one or several properties of transition metal oxides as descriptors for oxygen electrocatalysis remains elusive. In this work, we performed a detailed experimental and computational study of LaMnxNi1–xO3 perovskite nanostructures, establishing an unprecedented correlation between electrocatalytic activity and orbital composition. The composition and structure of the single-phase rhombohedral oxide nanostructures are characterized by a variety of techniques, including X-ray diffraction, X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and electron microscopy. Systematic electrochemical analysis of pseudocapacitive responses in the potential region relevant to oxygen electrocatalysis shows the evolution of Mn and Ni d-orbitals as a function of the perovskite composition. We rationalize these observations on the basis of electronic structure calculations employing DFT with HSE06 hybrid functional. Our analysis clearly shows a linear correlation between the OER kinetics and the integrated density of states (DOS) associated with Ni and Mn 3d states in the energy range relevant to operational conditions. In contrast, the ORR kinetics exhibits a second-order reaction with respect to the electron density in Mn and Ni 3d states. For the first time, our study identifies the relevant DOS dominating both reactions and the importance of understanding orbital occupancy under operational conditions
    corecore