7,190 research outputs found

    Angiotensin II blockade and aortic-root dilation in Marfan's syndrome

    Get PDF
    Background: Progressive enlargement of the aortic root, leading to dissection, is the main cause of premature death in patients with Marfan's syndrome. Recent data from mouse models of Marfan's syndrome suggest that aortic-root enlargement is caused by excessive signaling by transforming growth factor (beta) (TGF-(beta)) that can be mitigated by treatment with TGF-(beta) antagonists, including angiotensin II-receptor blockers (ARBs). We evaluated the clinical response to ARBs in pediatric patients with Marfan's syndrome who had severe aortic-root enlargement. Methods: We identified 18 pediatric patients with Marfan's syndrome who had been followed during 12 to 47 months of therapy with ARBs after other medical therapy had failed to prevent progressive aortic-root enlargement. The ARB was losartan in 17 patients and irbesartan in 1 patient. We evaluated the efficacy of ARB therapy by comparing the rates of change in aortic-root diameter before and after the initiation of treatment with ARBs. Results: The mean (+/-SD) rate of change in aortic-root diameter decreased significantly from 3.54+/-2.87 mm per year during previous medical therapy to 0.46+/-0.62 mm per year during ARB therapy (P<0.001). The deviation of aortic-root enlargement from normal, as expressed by the rate of change in z scores, was reduced by a mean difference of 1.47 z scores per year (95% confidence interval, 0.70 to 2.24; P<0.001) after the initiation of ARB therapy. The sinotubular junction, which is prone to dilation in Marfan's syndrome as well, also showed a reduced rate of change in diameter during ARB therapy (P<0.05), whereas the distal ascending aorta, which does not normally become dilated in Marfan's syndrome, was not affected by ARB therapy. Conclusions: In a small cohort study, the use of ARB therapy in patients with Marfan's syndrome significantly slowed the rate of progressive aortic-root dilation. These findings require confirmation in a randomized trial

    Analysis of the flavonoid component of bioactive New Zealand mānuka (Leptospermum scoparium) honey and the isolation, characterisation and synthesis of an unusual pyrrole

    Get PDF
    The flavonoid components of New Zealand mānuka (Leptospermum scoparium) honey have been quantified in a series of 31 honeys of varying non-peroxide antibacterial activity to clarify discrepancies between previous studies reported in the literature. Total flavonoid content was 1.16 mg/100 g honey. The principal flavonoids present were pinobanksin, pinocembrin, luteolin and chrysin and together these represented 61% of the total flavonoid content. 1, 2-formyl-5-(2-methoxyphenyl)-pyrrole, which was weakly correlated with the non-peroxide antibacterial activity, was isolated from the flavonoid fraction and separately synthesised. 1 did not display inhibitory activity against Staphylococcus aureus in vitro and thus the origin of the correlation, which is still unknown, is not a direct contribution

    Use of reverse transcription-polymerase chain reaction (RT-PCR) for Cymbidium mosaic virus (CyMV) detection in orchids

    Get PDF
    The reverse transcription-polymerase chain reaction CRT-PCR) was adapted for detection of Cymbidium mosaic virus CCyMV) in orchids. The oligonucleotide primers used were selected from the predicted homologous coat protein region of CyMV and other Potexviruses which enabled to amplify approximately 313 bp and 227 bp fragments using optimum reaction conditions of 2.5 mM MgCh and 30 cycles of amplification. The RT-PCR allowed the detection of CyMV RNA and virion in purified fonns as well as in crude tissue extracts of orchid. Direct CyMV RNA detection was possible in leaves, shoots, stems, roots and petals. The detection limits of RNA in purified CyMV and virion by RT-PCR described were 10 ng and 2 ng, respectively. The PCR amplified fragments were confinned to be CyMV-specific by dotblot hybridization with DIG-labelled CyMV cDNA probe. The suitability of the RT-PCR in routine testing of CyMV was detennined and compared with those of DAS-ELISA. Thirty samples of leaf tissues representing various genera or hybrids of cultivated local orchid from glasshouse and commercial nurseries were tested for CyMV by RT-PCR and DAS-ELISA. Among 15 samples that tested positive for CyMV infection by DAS-ELISA, only 7 samples gave the expected amplification fragments when subjected in RTPCR assays. The equal detection limit on purified CyMV virion by RT-PCR and DAS-ELISA and lower sensitivity of RT-PCR in detecting CyMV in a field indexing trial suggested that RT-PCR is unsuitable to replace DAS-ELISA for routine testing of CyMV in local orchids

    Quantification of Cell Movement Reveals Distinct Edge Motility Types During Cell Spreading

    Get PDF
    Actin-based motility is central to cellular processes such as migration, bacterial engulfment, and cancer metastasis, and requires precise spatial and temporal regulation of the cytoskeleton. We studied one such process, fibroblast spreading, which involves three temporal phases: early, middle, and late spreading, distinguished by differences in cell area growth. In these studies, aided by improved algorithms for analyzing edge movement, we observed that each phase was dominated by a single, kinematically and biochemically distinct cytoskeletal organization, or motility type. Specifically, early spreading was dominated by periodic blebbing; continuous protrusion occurred predominantly during middle spreading; and periodic contractions were prevalent in late spreading. Further characterization revealed that each motility type exhibited a distinct distribution of the actin-related protein VASP, while inhibition of actin polymerization by cytochalasin D treatment revealed different dependences on barbed-end polymerization. Through this detailed characterization and graded perturbation of the system, we observed that although each temporal phase of spreading was dominated by a single motility type, in general cells exhibited a variety of motility types in neighboring spatial domains of the plasma membrane edge. These observations support a model in which global signals bias local cytoskeletal biochemistry in favor of a particular motility type

    Tailoring the optical properties of lanthanide phosphors: prediction and characterization of the luminescence of Pr3+-doped LiYF4

    Get PDF
    We present a theoretical work detailing the electronic structure and the optical properties of (PrF₈)⁵⁻ embedded in LiYF₄, complementing the insight with data that are not available by experimental line. The local distortions due to the embedding of the lanthanide ion in the sites occupied in the periodic lattice by smaller yttrium centres, not detectable in regular X-ray analyses, are reproduced with the help of geometry optimization. Then, based on the local coordination environment, the relation structure–optical properties is constructed by Density Functional Theory computations in conjunction with the ligand field theory analyses (LFDFT) determining the [Xe]4f² → [Xe]4f¹5d¹ transitions. In previous instances we analysed rather symmetric systems, here facing the complexity of low symmetry cases, treated in the Wybourne ligand field parameterization and in the Angular Overlap Model (AOM) frame. A very important improvement at the AOM level is the consideration of the f–d mixing that brings coupling term of odd–even nature, essential for the realistic description of the asymmetric coordination centres. Furthermore, we introduce now a principle for modelling the emission intensity. The results are in agreement with available experimental findings. The relevance of the modelling has a practical face in the rational design of optimal luminescent materials needed in domestic lightening and also an academic side, revisiting with modern computational tools areas incompletely explored by the standard ligand field theories

    Understanding the social in a digital age

    Get PDF
    Datafication, algorithms, social media and their various assemblages enable massive connective processes, enriching personal interaction and amplifying the scope and scale of public networks. At the same time, surveillance capitalists and the social quantification sector are committed to monetizing every aspect of human communication, all of which threaten ideal social qualities, such as togetherness and connection. This Special Issue brings together a range of voices and provocations around ‘the social’, all of which aim to critically interrogate mediated human connection and their contingent socialities. Conventional methods may no longer be adequate, and we must rethink not only the fabric of the social but the very tools we use to make sense of our changing social formations. This Special Issue raises shared concerns with what the social means today, unpicking and rethinking the seams between digitization and social life that characterize today’s digital age

    Soil Management Regimes for Plant Health Care and Integrated Pest Management Programs in Ornamental Landscapes

    Get PDF
    Author Institution (Herms and Stinner): Department of Entomology, The Ohio State University; Author Institution (Hoitink): Department of Plant Pathology, The Ohio State University; Author Institution (Rose): Department of Horticulture and Crop Science, The Ohio State Universit

    Quantum Coherence Preservation in Extremely Dispersive Plasmonic Media

    Get PDF
    Quantum plasmonics experiments have on multiple occasions resulted in the observation of quantum coherence of discrete plasmons, which exhibit remarkable preservation of quantum interference visibility, a seemingly surprising feature for systems mixing light and matter with high Ohmic losses during propagation. However, most experiments to date used essentially weakly confined plasmons, which experience limited light-matter hybridization, thus limiting the potential for decoherence. In this paper, we investigate experimentally the robustness of coherence preservation in a plasmonic system: our setup is based on a hole-array chip supporting plasmons near the surface plasma frequency, where plasmonic dispersion and confinement are much stronger than in previous experiments, making the plasmons much more susceptible for decoherence processes. We, however, report preservation of quantum coherence even in these extreme conditions. We generate polarization-entangled pairs of photons using type-I spontaneous parametric down-conversion and transmit one of the photons through a plasmonic hole array that is numerically designed to convert incident single photons into highly dispersive single surface-plasmon polaritons. Our results show that the quality of photon entanglement after the plasmonic channel is unperturbed by the introduction of a highly dispersive plasmonic element. Our findings provide a lower bound of 100 fs for the pure dephasing time for dispersive plasmons in gold, and show that even in a highly dispersive regime surface plasmons preserve quantum mechanical correlations, making possible harnessing of the power of extreme light confinement for integrated quantum photonics
    corecore