95 research outputs found

    In vivo tracking and immunological properties of pulsed porcine monocyte-derived dendritic cells

    Get PDF
    Cellular therapies using immune cells and in particular dendritic cells (DCs) are being increasingly applied in clinical trials and vaccines. Their success partially depends on accurate delivery of cells to target organs or migration to lymph nodes. Delivery and subsequent migration of cells to regional lymph nodes is essential for effective stimulation of the immune system. Thus, the design of an optimal DC therapy would be improved by optimizing technologies for monitoring DC trafficking. Magnetic resonance imaging (MRI) represents a powerful tool for non-invasive imaging of DC migration in vivo. Domestic pigs share similarities with humans and represent an excellent animal model for immunological studies. The aim of this study was to investigate the possibility using pigs as models for DC tracking in vivo. Porcine monocyte derived DC (MoDC) culture with superparamagnetic iron oxide (SPIO) particles was standardized on the basis of SPIO concentration and culture viability. Phenotype, cytokine production and mixed lymphocyte reaction assay confirmed that porcine SPIO-MoDC culture were similar to mock MoDCs and fully functional in vivo. Alike, similar patterns were obtained in human MoDCs. After subcutaneous inoculation in pigs, porcine SPIO-MoDC migration to regional lymph nodes was detected by MRI and confirmed by Perls staining of draining lymph nodes. Moreover, after one dose of virus-like particles-pulsed MoDCs specific local and systemic responses were confirmed using ELISPOT IFN-γ in pigs. In summary, the results in this work showed that after one single subcutaneous dose of pulsed MoDCs, pigs were able to elicit specific local and systemic immune responses. Additionally, the dynamic imaging of MRI-based DC tracking was shown using SPIO particles. This proof-of-principle study shows the potential of using pigs as a suitable animal model to test DC trafficking with the aim of improving cellular therapies.We want to thank: Ferrán López, Rosa López, Zoraida Cervera, Pamela Martinez-Orellana, Tufaria Mussá, Massimiliano Baratelli, Diego Pérez, Sergio López from CRESA and José Luis Ruiz de la Torre and Javier Aceña (UAB) for farm and technical support; Jaume Martorell (Fundació Hospital Clínic Veterinari, UAB) for MRI support; Javier Domínguez (INIA) for the porcine antibodies; Antonio Lestuzzi, Michele Crisci and Raif Yucel for MR imaging support; Joaquim Segalés for anatomic pathology analysis; Mónica Pérez for immunohistochemical stainings; Aida Neira and Blanca Pérez for Perls staining; Eva Huerta y Marina Sibila for PCV2 PCR; David Andreu and Beatriz García de la Torre (Pompeu Fabra University, Barcelona), and Esther Blanco (CISA-INIA, Madrid), for the FMDV 3A peptide; Alicia Solórzano for critically reviewing the manuscript. This work was funded by the project AGL2010-22200-C02 of Spanish Ministry of Science and Innovation. PhD studies of Raquel Cabezón are funded by a doctoral FI fellowship from the Generalitat de Catalunya

    Plasmacytoid dendritic cells of melanoma patients present exogenous proteins to CD4+ T cells after FcγRII-mediated uptake

    Get PDF
    Plasmacytoid dendritic cells (pDCs) contribute to innate antiviral immune responses by producing type I interferons. Although human pDCs can induce T cell responses upon viral infection, it remains unclear if pDCs can present exogenous antigens. Here, we show that human pDCs exploit FcγRII (CD32) to internalize antigen–antibody complexes, resulting in the presentation of exogenous antigen to T cells. pDCs isolated from melanoma patients vaccinated with autologous monocyte-derived peptide- and keyhold limpet hemocyanin (KLH)–loaded dendritic cells, but not from nonvaccinated patients or patients that lack a humoral response against KLH, were able to stimulate KLH-specific T cell proliferation. Interestingly, we observed that internalization of KLH by pDCs depended on the presence of serum from vaccinated patients that developed an anti-KLH antibody response. Anti-CD32 antibodies inhibited antigen uptake and presentation, demonstrating that circulating anti-KLH antibodies binding to CD32 mediate KLH internalization. We conclude that CD32 is an antigen uptake receptor on pDCs and that antigen presentation by pDCs is of particular relevance when circulating antibodies are present. Antigen presentation by pDCs may thus modulate the strength and quality of the secondary phase of an immune response

    Post-mortem neuropathologic examination of a 5-case series of CAR T-cell treated patients

    Get PDF
    Introduction: Chimeric antigen receptor (CAR) T-cell therapy is a promising immunotherapy for the treatment of refractory hematopoietic malignancies. Adverse events are common, and neurotoxicity is one of the most important. However, the physiopathology is unknown and neuropathologic information is scarce.Materials and methods: Post-mortem examination of 6 brains from patients that underwent CAR T-cell therapy from 2017 to 2022. In all cases, polymerase chain reaction (PCR) in paraffin blocks for the detection of CAR T cells was performed.Results: Two patients died of hematologic progression, while the others died of cytokine release syndrome, lung infection, encephalomyelitis, and acute liver failure. Two out of 6 presented neurological symptoms, one with extracranial malignancy progression and the other with encephalomyelitis. The neuropathology of the latter showed severe perivascular and interstitial lymphocytic infiltration, predominantly CD8+, together with a diffuse interstitial histiocytic infiltration, affecting mainly the spinal cord, midbrain, and hippocampus, and a diffuse gliosis of basal ganglia, hippocampus, and brainstem. Microbiological studies were negative for neurotropic viruses, and PCR failed to detect CAR T -cells. Another case without detectable neurological signs showed cortical and subcortical gliosis due to acute hypoxic-ischemic damage. The remaining 4 cases only showed a mild patchy gliosis and microglial activation, and CAR T cells were detected by PCR only in one of them.Conclusions: In this series of patients that died after CAR T-cell therapy, we predominantly found non-specific or minimal neuropathological changes. CAR T-cell related toxicity may not be the only cause of neurological symptoms, and the autopsy could detect additional pathological findings

    Maturation of monocyte-derived dendritic cells with Toll-like receptor 3 and 7/8 ligands combined with prostaglandin E2 results in high interleukin-12 production and cell migration

    Get PDF
    Dendritic cells (DC) are professional antigen-presenting cells of the immune system that play a key role in regulating T cell-based immunity. In vivo, the capacity of DC to activate T cells depends on their ability to migrate to the T cell areas of lymph nodes as well as on their maturation state. Depending on their cytokine-secreting profile, DC are able to skew the immune response in a specific direction. In particular, IL-12p70 producing DC drive T cells towards a T helper 1 type response. A serious disadvantage of current clinical grade ex vivo generated monocyte-derived DC is the poor IL-12p70 production. We have investigated the effects of Toll-like receptor (TLR)-mediated maturation on ex vivo generated human monocyte-derived DC. We demonstrate that in contrast to cytokine-matured DC, DC matured with poly(I:C) (TLR3 ligand) and/or R848 (TLR7/8 ligand) are able to produce vast amounts of IL-12p70, but exhibit a reduced migratory capacity. The addition of prostaglandin E2 (PGE2) improved the migratory capacity of TLR-ligand matured DC while maintaining their IL-12p70 production upon T cell encounter. We propose a novel clinical grade maturation protocol in which TLR ligands poly(I:C) and R848 are combined with PGE2 to generate DC with both high migratory capacity and IL-12p70 production upon T cell encounter

    Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults

    Get PDF
    Background Underweight and obesity are associated with adverse health outcomes throughout the life course. We estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from 1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories. Methods We used data from 3663 population-based studies with 222 million participants that measured height and weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate trends in the prevalence of different BMI categories, separately for adults (age ≥20 years) and school-aged children and adolescents (age 5–19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the individual and combined prevalence of underweight (BMI <18·5 kg/m2) and obesity (BMI ≥30 kg/m2). For schoolaged children and adolescents, we report thinness (BMI <2 SD below the median of the WHO growth reference) and obesity (BMI >2 SD above the median). Findings From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in 11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and 140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%) with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and 42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents, the increases in double burden were driven by increases in obesity, and decreases in double burden by declining underweight or thinness. Interpretation The combined burden of underweight and obesity has increased in most countries, driven by an increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of underweight while curbing and reversing the increase in obesit

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Gram-negative enterobacteria induce tolerogenic maturation in dexamethasone conditioned dendritic cells.

    Get PDF
    Dendritic cells have been investigated in clinical trials, predominantly with the aim of stimulating immune responses against tumours or infectious diseases. Thus far, however, no clinical studies have taken advantage of their specific immunosuppressive potential. Tolerogenic DCs may represent a new therapeutic strategy for human immune-based diseases, such as Crohn's disease, where the perturbations of the finely tuned balance between the immune system and the microflora result in disease. In the present report, we describe the generation of tolerogenic DCs from healthy donors and Crohn's disease patients using clinical-grade reagents in combination with dexamethasone as immunosuppressive agent and characterize their response to maturation stimuli. Interestingly, we found out that dexamethasone-conditioned DCs keep their tolerogenic properties to Gram-negative bacteria. Other findings included in this study demonstrate that the combination of dexamethasone with a specific cytokine cocktail yielded clinical-grade DCs with the following characteristics: a semi-mature phenotype, a pronounced shift towards anti-inflammatory versus inflammatory cytokine production and low T-cell stimulatory properties. Importantly, in regard to their clinical application, the tolerogenic phenotype of DCs remained stable after the elimination of dexamethasone and after a second stimulation with LPS or bacteria. All these properties make this cell product suitable to be tested in clinical trials of inflammatory conditions including Crohn's disease
    corecore