15 research outputs found

    LGMDD1 natural history and phenotypic spectrum: Implications for clinical trials

    Get PDF
    OBJECTIVE: To delineate the full phenotypic spectrum and characterize the natural history of limb girdle muscular dystrophy type D1 (LGMDD1). METHODS: We extracted age at clinical events of interest contributing to LGMDD1 disease burden via a systematic literature and chart review. Manual muscle testing and quantitative dynamometry data were used to estimate annualized rates of change. We also conducted a cross-sectional observational study using previously validated patient-reported outcome assessments (ACTIVLIM, PROMIS-57) and a new LGMDD1 questionnaire. Some individuals underwent repeat ACTIVLIM and LGMDD1 questionnaire assessments at 1.5 and 2.5 years. RESULTS: A total of 122 LGMDD1 patients were included from 14 different countries. We identified two new variants (p.E54K, p.V99A). In vitro assays and segregation support their pathogenicity. The mean onset age was 29.7 years. Genotype appears to impact onset age, weakness pattern, and median time to loss of ambulation (34 years). Dysphagia was the most frequent abnormality (51.4%). Deltoids, biceps, grip, iliopsoas, and hamstrings strength decreased by (0.5-1 lb/year). Cross-sectional ACTIVLIM and LGMDD1 questionnaire scores correlated with years from disease onset. Longitudinally, only the LGMDD1 questionnaire detected significant progression at both 1.5 and 2.5 years. Treatment trials would require 62 (1.5 years) or 30 (2.5 years) patients to detect a 70% reduction in the progression of the LGMDD1 questionnaire. INTERPRETATION: This study is the largest description of LGMDD1 patients to date and highlights potential genotype-dependent differences that need to be verified prospectively. Future clinical trials will need to account for variability in these key phenotypic features when selecting outcome measures and enrolling patients

    Hsp70 Chaperones and Type I PRMTs Are Sequestered at Intranuclear Inclusions Caused by Polyalanine Expansions in PABPN1

    Get PDF
    Genomic instability at loci with tandem arrays of simple repeats is the cause for many neurological, neurodegenerative and neuromuscular diseases. When located in coding regions, disease-associated expansions of trinucleotide repeats are translated into homopolymeric amino acid stretches of glutamine or alanine. Polyalanine expansions in the poly(A)-binding protein nuclear 1 (PABPN1) gene causes oculopharyngeal muscular dystrophy (OPMD). To gain novel insight into the molecular pathophysiology of OPMD, we studied the interaction of cellular proteins with normal and expanded PABPN1. Pull-down assays show that heat shock proteins including Hsp70, and type I arginine methyl transferases (PRMT1 and PRMT3) associate preferentially with expanded PABPN1. Immunofluorescence microscopy further reveals accumulation of these proteins at intranuclear inclusions in muscle from OPMD patients. Recombinant PABPN1 with expanded polyalanine stretches binds Hsp70 with higher affinity, and data from molecular simulations suggest that expansions of the PABPN1 polyalanine tract result in transition from a disordered, flexible conformation to a stable helical secondary structure. Taken together, our results suggest that the pathological mutation in the PABPN1 gene alters the protein conformation and induces a preferential interaction with type I PRMTs and Hsp70 chaperones. This in turn causes sequestration in intranuclear inclusions, possibly leading to a progressive cellular defect in arginine methylation and chaperone activity

    Inhibition of DNAJ-HSP70 interaction improves strength in muscular dystrophy

    Get PDF
    Dominant mutations in the HSP70 cochaperone DNAJB6 cause a late-onset muscle disease termed limb-girdle muscular dystrophy type D1 (LGMDD1), which is characterized by protein aggregation and vacuolar myopathology. Disease mutations reside within the G/F domain of DNAJB6, but the molecular mechanisms underlying dysfunction are not well understood. Using yeast, cell culture, and mouse models of LGMDD1, we found that the toxicity associated with disease-associated DNAJB6 required its interaction with HSP70 and that abrogating this interaction genetically or with small molecules was protective. In skeletal muscle, DNAJB6 localizes to the Z-disc with HSP70. Whereas HSP70 normally diffused rapidly between the Z-disc and sarcoplasm, the rate of diffusion of HSP70 in LGMDD1 mouse muscle was diminished, probably because it had an unusual affinity for the Z-disc and mutant DNAJB6. Treating LGMDD1 mice with a small-molecule inhibitor of the DNAJ-HSP70 complex remobilized HSP70, improved strength, and corrected myopathology. These data support a model in which LGMDD1 mutations in DNAJB6 are a gain-of-function disease that is, counterintuitively, mediated via HSP70 binding. Thus, therapeutic approaches targeting HSP70-DNAJB6 may be effective in treating this inherited muscular dystrophy

    Mutations in the J domain of DNAJB6 cause dominant distal myopathy

    Get PDF
    Eight patients from five families with undiagnosed dominant distal myopathy underwent clinical, neurophysiological and muscle biopsy examinations. Molecular genetic studies were performed using targeted sequencing of all known myopathy genes followed by segregation of the identified mutations in the affected families using Sanger sequencing. Two novel mutations in DNAJB6 J domain, c.149C>T (p.A50V) and c.161A>C (p.E54A), were identified as the cause of disease. The muscle involvement with p.A50V was distal calf-predominant, and the p.E54A was more proximo-distal. Histological findings were similar to those previously reported in DNAJB6 myopathy. In line with reported pathogenic mutations in the glycine/phenylalanine (G/F) domain of DNAJB6, both the novel mutations showed reduced anti-aggregation capacity by filter trap assay and TDP-43 disaggregation assays. Modeling of the protein showed close proximity of the mutated residues with the G/F domain. Myopathy-causing mutations in DNAJB6 are not only located in the G/F domain, but also in the J domain. The identified mutations in the J domain cause dominant distal and proximo-distal myopathy, confirming that mutations in DNAJB6 should be considered in distal myopathy cases.Peer reviewe

    Myopathy associated BAG3 mutations lead to protein aggregation by stalling Hsp70 networks

    Get PDF
    BAG3 is a multi-domain hub that connects two classes of chaperones, small heat shock proteins (sHSPs) via two isoleucine-proline-valine (IPV) motifs and Hsp70 via a BAG domain.\ua0Mutations in either the IPV or BAG domain of BAG3 cause a dominant form of myopathy, characterized by protein aggregation in both skeletal and cardiac muscle tissues. Surprisingly, for both disease mutants, impaired chaperone binding is not sufficient to explain disease phenotypes. Recombinant mutants are correctly folded, show unaffected Hsp70 binding but are impaired in stimulating Hsp70-dependent client processing. As a consequence, the mutant BAG3 proteins become the node for a dominant gain of function causing aggregation of itself, Hsp70, Hsp70 clients and tiered interactors within the BAG3 interactome. Importantly, genetic and pharmaceutical interference with Hsp70 binding completely reverses stress-induced protein aggregation for both BAG3 mutations. Thus, the gain of function effects of BAG3 mutants act as Achilles heel of the HSP70 machinery

    Stepwise evolution of Salmonella Typhimurium ST313 causing bloodstream infection in Africa

    Get PDF
    Bloodstream infections caused by nontyphoidal Salmonella are a major public health concern in Africa, causing ~49,600 deaths every year. The most common Salmonella enterica pathovariant associated with invasive nontyphoidal Salmonella disease is Salmonella Typhimurium sequence type (ST)313. It has been proposed that antimicrobial resistance and genome degradation has contributed to the success of ST313 lineages in Africa, but the evolutionary trajectory of such changes was unclear. Here, to define the evolutionary dynamics of ST313, we sub-sampled from two comprehensive collections of Salmonella isolates from African patients with bloodstream infections, spanning 1966 to 2018. The resulting 680 genome sequences led to the discovery of a pan-susceptible ST313 lineage (ST313 L3), which emerged in Malawi in 2016 and is closely related to ST313 variants that cause gastrointestinal disease in the United Kingdom and Brazil. Genomic analysis revealed degradation events in important virulence genes in ST313 L3, which had not occurred in other ST313 lineages. Despite arising only recently in the clinic, ST313 L3 is a phylogenetic intermediate between ST313 L1 and L2, with a characteristic accessory genome. Our in-depth genotypic and phenotypic characterization identifies the crucial loss-of-function genetic events that occurred during the stepwise evolution of invasive S. Typhimurium across Africa
    corecore