965 research outputs found

    Intrinsic fantasy: motivation and affect in educational games made by children

    Get PDF
    The concept of intrinsic fantasy has been considered central to the aim of usefully applying the positive affect of computer games to learning. Games with intrinsic fantasy are defined as having “an integral and continuing relationship with the instructional content being presented”, and are claimed as “more interesting and more educational” than extrinsic fantasy games [1]. Studies of children making educational games have shown they usually create extrinsic games for curriculum learning content. In this study, children were encouraged to create non-curriculum games, more easily distanced from the extrinsic preconceptions of formal schooling. Forty, 7-11 year olds took part in this study (17 boys and 23 girls), designing and making their own games at an after-school club. Despite non-curriculum learning content, no more intrinsic games were created than in previous studies. The children failed to create their own pedagogical models for non-curriculum content and did not see the educational value of intrinsic fantasy games. The implications for transfer and learning in intrinsic games are discussed whilst the definition of intrinsic fantasy itself is questioned. It is argued that the integral relationship of fantasy is unlikely to be the most critical means of improving the educational effectiveness of digital games

    Supporting ethnographic studies of ubiquitous computing in the wild

    Get PDF
    Ethnography has become a staple feature of IT research over the last twenty years, shaping our understanding of the social character of computing systems and informing their design in a wide variety of settings. The emergence of ubiquitous computing raises new challenges for ethnography however, distributing interaction across a burgeoning array of small, mobile devices and online environments which exploit invisible sensing systems. Understanding interaction requires ethnographers to reconcile interactions that are, for example, distributed across devices on the street with online interactions in order to assemble coherent understandings of the social character and purchase of ubiquitous computing systems. We draw upon four recent studies to show how ethnographers are replaying system recordings of interaction alongside existing resources such as video recordings to do this and identify key challenges that need to be met to support ethnographic study of ubiquitous computing in the wild

    A broadband THz receiver for low background space applications

    Get PDF
    We have developed a sensitive bolometric receiver for low background space applications. In a 10 percent bandwidth at 1 THz, this receiver is approximately 100 times more sensitive than a quantum limited heterodyne receiver with a 1 GHz IF bandwidth. This receiver is designed to be used for the long wavelength band (200-700 microns) in the MIPS instrument on NASA's SIRTF satellite. The bolometers are cooled to 100 mK by an adiabatic demagnetization refrigerator. Roughly 60 g of cesium chrome alum salt is partially demagnetized to 100 mK, followed by a slow regulated downramp to compensate for the heat leak. The hold time of the ADR system is about 18 hours with a temperature stability of delta T(sub rms) approx. equals 10 micro-K. The composite bolometers have electrical responsivities of 10(exp 9)V/W and electrical NEP's of about 3x10(exp -17) W/square root of Hz. The bolometer signals are read out by JFET preamplifiers located on the helium plate and operated at 120 K. We have addressed a number of space qualification issues, such as the development of an analog magnet controller, construction of a cryogenic shake-table for bolometers and selection of the paramagnetic salt CCA which can survive a bakeout at 50 C. The receiver is scheduled to be flown in the spring of 1992 on a balloon telescope. This flight has a dual purpose. One is to provide realistic test of the capabilities of the new receiver. The other is to search for anisotropies in the cosmic microwave background on scales of a few degrees

    Abstract machines: overlaying virtual worlds on physical rides

    Get PDF
    Overlaying virtual worlds onto existing physical rides and altering the sensations of motion can deliver new experiences of thrill, but designing how motion is mapped between physical ride and virtual world is challenging. In this paper, we present the notion of an abstract machine, a new form of intermediate design knowledge that communicates motion mappings at the level of metaphor, mechanism and implementation. Following a performance-led, in-the-wild approach we report lessons from creating and touring VR Playground, a ride that overlays four distinct abstract machines and virtual worlds on a playground swing. We compare the artist's rationale with riders' reported experiences and analysis of their physical behaviours to reveal the distinct thrills of each abstract machine. Finally, we discuss how to make and use abstract machines in terms of heuristics for designing motion mappings, principles for virtual world design and communicating experiences to riders

    Evocative computing – creating meaningful lasting experiences in connecting with the past

    Get PDF
    We present an approach – evocative computing – that demonstrates how ‘at hand’ technologies can be ‘picked up’ and used by people to create meaningful and lasting experiences, through connecting and interacting with the past. The approach is instantiated here through a suite of interactive technologies configured for an indoor-outdoor setting that enables groups to explore, discover and research the history and background of a public cemetery. We report on a two-part study where different groups visited the cemetery and interacted with the digital tools and resources. During their activities serendipitous uses of the technology led to connections being made between personal memo-ries and ongoing activities. Furthermore, these experiences were found to be long-lasting; a follow-up study, one year later, showed them to be highly memorable, and in some cases leading participants to take up new directions in their work. We discuss the value of evocative computing for enriching user experiences and engagement with heritage practices

    Wide-field Infrared Survey Explorer Observations of the Evolution of Massive Star-forming Regions

    Get PDF
    We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars

    Recognizing the presence of hidden visual markers in digital images

    Get PDF
    As the promise of Virtual and Augmented Reality (VR and AR) becomes more realistic, an interesting aspect of our enhanced living environment includes the availability — indeed the potential ubiquity — of scannable markers. Such markers could represent an initial step into the AR and VR worlds. In this paper, we address the important question of how to recognise the presence of visual markers in freeform digital photos. We use a particularly challenging marker format that is only minimally constrained in structure, called Artcodes. Artcodes are a type of topological marker system enabling people, by following very simple drawing rules, to design markers that are both aesthetically beautiful and machine readable. Artcodes can be used to decorate the surface of any objects, and yet can also contain a hidden digital meaning. Like some other more commonly used markers (such as Barcodes, QR codes), it is possible to use codes to link physical objects to digital data, augmenting everyday objects. Obviously, in order to trigger the behaviour of scanning and further decoding of such codes, it is first necessary for devices to be aware of the presence of Artcodes in the image. Although considerable literature exists related to the detection of rigidly formatted structures and geometrical feature descriptors such as Harris, SIFT, and SURF, these approaches are not sufficient for describing freeform topological structures, such as Artcode images. In this paper, we propose a new topological feature descriptor that can be used in the detection of freeform topological markers, including Artcodes. This feature descriptor is called a Shape of Orientation Histogram (SOH). We construct this SOH feature vector by quantifying the level of symmetry and smoothness of the orientation histogram, and then use a Random Forest machine learning approach to classify images that contain Artcodes using the new feature vector. This system represents a potential first step for an eventual mobile device application that would detect where in an image such an unconstrained code appears. We also explain how the system handles imbalanced datasets — important for rare, handcrafted codes such as Artcodes — and how it is evaluated. Our experimental evaluation shows good performance of the proposed classification model in the detection of Artcodes: obtaining an overall accuracy of approx. 0.83, F2 measure 0.83, MCC 0.68, AUC-ROC 0.93, and AUC-PR 0.91

    Connecting Everyday Objects with the Metaverse: A Unified Recognition Framework

    Full text link
    The recent Facebook rebranding to Meta has drawn renewed attention to the metaverse. Technology giants, amongst others, are increasingly embracing the vision and opportunities of a hybrid social experience that mixes physical and virtual interactions. As the metaverse gains in traction, it is expected that everyday objects may soon connect more closely with virtual elements. However, discovering this "hidden" virtual world will be a crucial first step to interacting with it in this new augmented world. In this paper, we address the problem of connecting physical objects with their virtual counterparts, especially through connections built upon visual markers. We propose a unified recognition framework that guides approaches to the metaverse access points. We illustrate the use of the framework through experimental studies under different conditions, in which an interactive and visually attractive decoration pattern, an Artcode, is used as the approach to enable the connection. This paper will be of interest to, amongst others, researchers working in Interaction Design or Augmented Reality who are seeking techniques or guidelines for augmenting physical objects in an unobtrusive, complementary manner.Comment: This paper includes 6 pages, 4 figures, and 1 table, and has been accepted to be published by the 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC), Los Alamitos, CA, US

    The Urban Political Ecology of Post-industrial Scottish Towns: Examining Greengairs and Ravenscraig

    Get PDF
    Urban ecological politics is shaped by both moments of concerted action and more silent perceptions and responses. Instead of only being evident in situations of organised protest, the politics of urban ecology is also manifested, in material and symbolic terms, in the daily life of the residents. The fragmentation of urban political ecology turns out to be an important element in the affirmation of post-political forms of urban governance. Those issues were the object of fieldwork research carried out in Greengairs and Ravenscraig, two towns in North Lanarkshire, near Glasgow, with the goal of unravelling the understanding and the coping mechanisms of environmentally deprived residents. The towns are permeated by a widespread, often dissimulated, political ecology that is nonetheless always present. Empirical results demonstrate that a more comprehensive handling of the political ecology of the urban is crucial in order to halt the sources of marginalisation and ecological degradation

    First Digit Distribution of Hadron Full Width

    Full text link
    A phenomenological law, called Benford's law, states that the occurrence of the first digit, i.e., 1,2,...,91,2,...,9, of numbers from many real world sources is not uniformly distributed, but instead favors smaller ones according to a logarithmic distribution. We investigate, for the first time, the first digit distribution of the full widths of mesons and baryons in the well defined science domain of particle physics systematically, and find that they agree excellently with the Benford distribution. We also discuss several general properties of Benford's law, i.e., the law is scale-invariant, base-invariant, and power-invariant. This means that the lifetimes of hadrons follow also Benford's law.Comment: 8 latex pages, 4 figures, final version in journal publicatio
    • 

    corecore