929 research outputs found
Kainate Receptor-Mediated Modulation of Hippocampal Fast Spiking Interneurons in a Rat Model of Schizophrenia
Kainate receptor (KAR) subunits are believed to be involved in abnormal GABAergic neurotransmission in the hippocampus (HIPP) in schizophrenia (SZ) and bipolar disorder. Postmortem studies have shown changes in the expression of the GluR5/6 subunits of KARs in the stratum oriens (SO) of sectors CA2/3, where the basolateral amygdala (BLA) sends a robust projection. Previous work using a rat model of SZ demonstrated that BLA activation leads to electrophysiological changes in fast-spiking interneurons in SO of CA2/3. The present study explores KAR modulation of interneurons in CA2/3 in response to BLA activation. Intrinsic firing properties of these interneurons through KAR-mediated activity were measured with patch-clamp recordings from rats that received 15 days of picrotoxin infusion into the BLA. Chronic BLA activation induced changes in the firing properties of CA2/3 interneurons associated with modifications in the function of KARs. Specifically, the responsiveness of these interneurons to activation of KARs was diminished in picrotoxin-treated rats, while the after-hyperpolarization (AHP) amplitude was increased. In addition, we tested blockers of KAR subunits which have been shown to have altered gene expression in SO sector CA2/3 of SZ subjects. The GluR5 antagonist UBP296 further decreased AP frequency and increased AHP amplitude in picrotoxin-treated rats. Application of the GluR6/7 antagonist NS102 suggested that activation of GluR6/7 KARs may be required to maintain the high firing rates in SO interneurons in the presence of KA. Moreover, the GluR6/7 KAR-mediated signaling may be suppressed in PICRO-treated rats. Our findings indicate that glutamatergic activity from the BLA may modulate the firing properties of CA2/3 interneurons through GluR5 and GluR6/7 KARs. These receptors are expressed in GABAergic interneurons and play a key role in the synchronization of gamma oscillations. Modulation of interneuronal activity through KARs in response to amygdala activation may lead to abnormal oscillatory rhythms reported in SZ subjects
Popular attitudes to memory, the body, and social identity : the rise of external commemoration in Britain, Ireland, and New England
A comparative analysis of samples of external memorials from burial grounds in Britain, Ireland and New England reveals a widespread pattern of change in monument style and content, and exponential growth in the number of permanent memorials from the 18th century onwards. Although manifested in regionally distinctive styles on which most academic attention has so far been directed, the expansion reflects global changes in social relationships and concepts of memory and the body. An archaeological perspective reveals the importance of external memorials in articulating these changing attitudes in a world of increasing material consumption
Progressive development of augmentation during long-term treatment with levodopa in restless legs syndrome: results of a prospective multi-center study
The European Restless Legs Syndrome (RLS) Study Group performed the first multi-center, long-term study systematically evaluating RLS augmentation under levodopa treatment. This prospective, open-label 6-month study was conducted in six European countries and included 65 patients (85% treatment naive) with idiopathic RLS. Levodopa was flexibly up-titrated to a maximum dose of 600 mg/day. Presence of augmentation was diagnosed independently by two international experts using established criteria. In addition to the augmentation severity rating scale (ASRS), changes in RLS severity (International RLS severity rating scale (IRLS), clinical global impression (CGI)) were analyzed. Sixty patients provided evaluable data, 35 completed the trial and 25 dropped out. Augmentation occurred in 60% (36/60) of patients, causing 11.7% (7/60) to drop out. Median time to occurrence of augmentation was 71 days. The mean maximum dose of levodopa was 311 mg/day (SD: 105). Patients with augmentation compared to those without were significantly more likely to be on higher doses of levodopa (≥300 mg, 83 vs. 54%, P = 0.03) and to show less improvement of symptom severity (IRLS, P = 0.039). Augmentation was common with levodopa, but could be tolerated by most patients during this 6-month trial. Patients should be followed over longer periods to determine if dropout rates increase with time
Induction of the GABA Cell Phenotype: An In Vitro Model for Studying Neurodevelopmental Disorders
Recent studies of the hippocampus have suggested that a network of genes is associated with the regulation of the GAD67 (GAD1) expression and may play a role in γ-amino butyric acid (GABA) dysfunction in schizophrenia (SZ) and bipolar disorder (BD). To obtain a more detailed understanding of how GAD67 regulation may result in GABAergic dysfunction, we have developed an in vitro model in which GABA cells are differentiated from the hippocampal precursor cell line, HiB5. Growth factors, such as PDGF, and BDNF, regulate the GABA phenotype by inducing the expression of GAD67 and stimulating the growth of cellular processes, many with growth cones that form appositions with the cell bodies and processes of other GAD67-positive cells. These changes are associated with increased expression of acetylated tubulin, microtubule-associated protein 2 (MAP2) and the post-synaptic density protein 95 (PSD95). The addition of BDNF, together with PDGF, increases the levels of mRNA and protein for GAD67, as well as the high affinity GABA uptake protein, GAT1. These changes are associated with increased concentrations of GABA in the cytoplasm of “differentiated” HiB5 neurons. In the presence of Ca2+ and K+, newly synthesized GABA is released extracellularly. When the HiB5 cells appear to be fully differentiated, they also express GAD65, parvalbumin and calbindin, and GluR subtypes as well as HDAC1, DAXX, PAX5, Runx2, associated with GAD67 regulation. Overall, these results suggest that the HiB5 cells can differentiate into functionally mature GABA neurons in the presence of gene products that are associated with GAD67 regulation in the adult hippocampus
Recommended from our members
Phase II study of olaparib in patients with refractory Ewing sarcoma following failure of standard chemotherapy
Background: Preclinical studies have documented antitumor activity of PARP inhibition both in vitro and in vivo, against Ewing sarcoma cells. This study aimed to translate that observation into a clinical trial to assess the efficacy and tolerability of olaparib, a PARP inhibitor, in patients with advanced Ewing sarcoma (EWS) progressing after prior chemotherapy. Methods: In this nonrandomized phase II trial, adult participants with radiographically measureable metastatic EWS received olaparib tablets, 400 mg orally twice daily, until disease progression or drug intolerance. Tumor measurements were determined by CT or MRI at 6 and 12 weeks after starting olaparib administration, and then every 8 weeks thereafter. Tumor response determinations were made according to RECIST 1.1, and adverse event determinations were made according to CTCAE, version 4.0. A total of 22 participants were planned to be enrolled using a conventional 2-step phase II study design. If no objective responses were observed after 12 participants had been followed for at least 3 months, further accrual would be stopped. Results: 12 participants were enrolled, and all were evaluable. There were no objective responses (PR/CR), 4 SD (duration 10.9, 11.4, 11.9, and 17.9 wks), and 8 PD as best response. Of the SD, 2 had minor responses (−9% and −11.7% by RECIST 1.1). The median time to disease progression was 5.7 weeks. Further enrollment was therefore discontinued. No significant or unexpected toxicities were observed with olaparib, with only a single case each of grade 3 anemia and grade 3 thrombocytopenia observed. Conclusions: This study is the first report of a prospective phase II trial to evaluate the safety and efficacy of a PARP inhibitor in patients with advanced Ewing sarcoma after failure of standard chemotherapy. Olaparib administration was safe and well tolerated when administered to this small heavily pre-treated cohort at the 400 mg BID dose, although the median duration of dosing was for only 5.7 weeks. No significant responses or durable disease control was seen, and the short average interval to disease progression underscores the aggressiveness of this disease. Other studies to combine cytotoxic chemotherapy with PARP inhibition in EWS are actively ongoing. Trial registration ClinicalTrials.gov Identifier: NCT0158354
Transcription profiling reveals potential mechanisms of dysbiosis in the oral microbiome of rhesus macaques with chronic untreated SIV infection.
A majority of individuals infected with human immunodeficiency virus (HIV) have inadequate access to antiretroviral therapy and ultimately develop debilitating oral infections that often correlate with disease progression. Due to the impracticalities of conducting host-microbe systems-based studies in HIV infected patients, we have evaluated the potential of simian immunodeficiency virus (SIV) infected rhesus macaques to serve as a non-human primate model for oral manifestations of HIV disease. We present the first description of the rhesus macaque oral microbiota and show that a mixture of human commensal bacteria and "macaque versions" of human commensals colonize the tongue dorsum and dental plaque. Our findings indicate that SIV infection results in chronic activation of antiviral and inflammatory responses in the tongue mucosa that may collectively lead to repression of epithelial development and impact the microbiome. In addition, we show that dysbiosis of the lingual microbiome in SIV infection is characterized by outgrowth of Gemella morbillorum that may result from impaired macrophage function. Finally, we provide evidence that the increased capacity of opportunistic pathogens (e.g. E. coli) to colonize the microbiome is associated with reduced production of antimicrobial peptides
Orexin Receptor Antagonism, a New Sleep-Enabling Paradigm: A Proof-of-Concept Clinical Trial
Peer reviewe
The seesaw mechanism at TeV scale in the 3-3-1 model with right-handed neutrinos
We implement the seesaw mechanism in the 3-3-1 model with right-handed
neutrinos. This is accomplished by the introduction of a scalar sextet into the
model and the spontaneous violation of the lepton number. We identify the
Majoron as a singlet under symmetry, which makes it
safe under the current bounds imposed by electroweak data. The main result of
this work is that the seesaw mechanism works already at TeV scale with the
outcome that the right-handed neutrino masses lie in the electroweak scale, in
the range from MeV to tens of GeV. This window provides a great opportunity to
test their appearance at current detectors, though when we contrast our results
with some previous analysis concerning detection sensitivity at LHC, we
conclude that further work is needed in order to validate this search.Comment: about 13 pages, no figure
- …