80 research outputs found

    In Vitro Radical Scavenging and Anti-Yeast Activity of Extracts from Leaves of Aloe Species Growing in Congo

    Get PDF
    Extracts obtained from leaves of Aloe barbadensis and A. congolensis, growing in Congo, were analyzed for their in vitro antiradical and anti-yeast activity. Different leaf tissues (tegument and gel) were analyzed separately. Their phenolic fractions showed the presence of chromones and anthrones (aloesin, aloin B, aloin A, and isoaloeresin), flavonoids (apigenin and kaempferol derivatives), and hydroxycinnamic acids. A differential quantitative composition was observed between leaf tegument and gel: in the first, higher concentrations of the four classes of compounds were observed. The extracts from the tegument exhibited higher in vitro antiradical and antimycotic activity than gel extracts. In a few cases, extracts from teguments were active against amphotericin B-insensitive yeasts. Due to the lack of radical scavenging and yeast inhibition observed when aloin was used, it was possible to postulate that the in vitro activities of the teguments could be related to their high concentration of flavonoids and hydroxycinnamic acids

    Non-Conventional Yeasts Whole Cells as Efficient Biocatalysts for the Production of Flavors and Fragrances

    Get PDF
    The rising consumer requests for natural flavors and fragrances have generated great interest in the aroma industry to seek new methods to obtain fragrance and flavor compounds naturally. An alternative and attractive route for these compounds is based on bio-transformations. In this review, the application of biocatalysis by Non Conventional Yeasts (NCYs) whole cells for the production of flavor and fragrances is illustrated by a discussion of the production of different class of compounds, namely Aldehydes, Ketones and related compounds, Alcohols, Lactones, Terpenes and Terpenoids, Alkenes, and Phenols

    Molecular characterization of Prototheca strains isolated from Italian dairy herds.

    Get PDF
    One hundred sixty-one Prototheca spp. strains isolated from composite milk and barn-surrounding environmental samples (bedding, feces, drinking, or washing water, surface swabs) of 24 Italian dairy herds were characterized by genotype-specific PCR analysis. Overall, 97.2% of strains isolated from composite milk samples were characterized as Prototheca zopfii genotype 2, confirming its role as the main mastitis pathogen, whereas Prototheca blaschkeae was only sporadically isolated (2.8%). Regarding environmental sampling, 84.9% of isolates belonged to P. zopfii genotype 2, 13.2% to P. blaschkeae, and 1.9% to P. zopfii genotype 1. The data herein contradict previous hypotheses about the supposed exclusive role of P. zopfii genotype 2 as the causative agent of protothecal mastitis and, on the contrary, confirm the hypothesis that such pathology could be caused by P. blaschkeae in a few instances

    A comparative study of the in vitro activity of iodopropynyl butylcarbamate and amphotericin B against Prototheca spp. isolates from European dairy herds.

    Get PDF
    ABSTRACT The objective of this study was to assess the in vitro effect of iodopropynyl butylcarbamate (IPBC) and amphotericin B (AMB) on Prototheca zopfii genotype 2 and Prototheca blaschkeae isolates recovered from dairy herds of Belgium, France, Italy, Germany, and Poland. The combination of IPBC with AMB on Prototheca isolates and toxicity of IPBC to the bovine mammary epithelial cells were also evaluated. The in vitro activity of IPBC and AMB against 96 isolates of P. zopfii genotype 2 and 42 isolates of P. blaschkeae was performed. Minimum inhibitory concentrations (MIC) and minimum algicidal concentrations (MAC) of IPBC and AMB were determined. To determine any synergistic, additive, or antagonistic effect of the combination of IPBC and AMB, 2-dimensional checkerboard combination tests were also performed to calculate fractional inhibitory concentrations. Cytotoxicity analysis of IPBC to the bovine mammary epithelial cell line was performed using a 3-(4,5-dimethyl-2-thiazol-2yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The MIC for 50 and 90% of isolates (MIC 50 and MIC 90 , respectively) for IPBC were 4 and 8 mg/L versus 0.5 and 1 mg/L for AMB, respectively. The MIC profiles differed between P. zopfii genotype 2 and P. blaschkeae , with the latter species being more susceptible to both compounds. The MIC 50 and MIC 90 of IPBC were 4 and 8 mg/L for P. zopfii genotype 2 and 1 and 2 mg/L for P. blaschkeae , respectively. The MIC 50 and MIC 90 of AMB were both 1 mg/L for P. zopfii genotype 2 and 0.25 and 1 mg/L for P. blaschkeae , respectively. Both IPBC and AMB exhibited the ability to kill Prototheca spp. The MAC for 90% of isolates of IPBC was twice the MIC 90 , whereas an 8-fold increase of the MIC 90 was algicidal in the case of AMB. Overall, the combined use of IPBC and AMB exhibited an increased algicidal effect, albeit the fractional inhibitory concentration index showed synergistic activity only against 3 P. zopfii genotype 2 isolates. For all the remaining isolates (87.5%), this combination produced only an additive effect. The MTT assay results showed both IPBC and AMB, at the concentrations employed in the study, to be nontoxic to the epithelial mammary gland cells (cell viability >90%). Notably, only IPBC at the highest concentration (i.e., 8 mg/L) exerted a slight cytotoxic effect on the cell line tested (mean cell viability: 88.54 ± 3.88 and 90.66 ± 3.0, after 2 and 4 h of MTT treatment, respectively). The anti- Prototheca activity of IPBC was here demonstrated for the first time. In addition, the combined use of IPBC with AMB enhanced each other's effect, creating an additive rather than synergistic interaction. Both agents, used at concentrations corresponding to MIC values against Prototheca spp., showed no toxic effect for the mammary epithelial cells. In conclusion, IPBC, used either alone or in combination with AMB, can be considered a promising option in the treatment armamentarium for protothecal mastitis in dairy cows

    Study of Holtermanniella wattica, Leucosporidium creatinivorum, Naganishia adeliensis, Solicoccozyma aeria, and Solicoccozyma terricola for their lipogenic aptitude from different carbon sources

    Get PDF
    Background The ability of some microorganisms to accumulate lipids is well known; however, only recently the number of studies on microbial lipid biosynthesis for obtaining oleochemical products, namely biofuels and some building blocks for chemistry, is rapidly and spectacularly increased. Since 1990s, some oleaginous yeasts were studied for their ability to accumulate lipids up to 60\u201370% of their dry weight. Due to the vast array of engineering techniques currently available, the recombinant DNA technology was the main approach followed so far for obtaining lipid-overproducing yeasts, mainly belonging to the Yarrowia lipolytica. However, an alternative approach can be offered by worldwide diversity as source of novel oleaginous yeasts. Lipogenic aptitude of a number of yeast strains has been reviewed, but many of these studies utilized a limited number of species and/or different culture conditions that make impossible the comparison of different results. Accordingly, the lipogenic aptitude inside the yeast world is still far from being fully explored, and finding new oleaginous yeast species can acquire a strategic importance. Results Holtermanniella wattica, Leucosporidium creatinivorum, Naganishia adeliensis, Solicoccozyma aeria, and Solicoccozyma terricola strains were selected as a result of a large-scale screening on 706 yeasts (both Ascomycota and Basidiomycota). Lipid yields and fatty acid profiles of selected strains were evaluated at 20 and 25 \ub0C on glucose, and on glycerol, xylose, galactose, sucrose, maltose, and cellobiose. A variable fatty acid profile was observed in dependence of both temperature and different carbon sources. On the whole, L. creatinivorum exhibited the highest performances: total lipid yield (YL) >7 g/l on glucose and glycerol, % of intracellular lipids on cell biomass (YL/DW) >70% at 20 \ub0C on glucose, lipid coefficient (YL/Glu) around 20% on glucose, and daily productivity (YL/d) on glucose and sucrose >1.6 g/(l*d). Conclusions This study provides some meaningful information about the lipogenic ability of some yeast species. Variable lipid yields and fatty acid profiles were observed in dependence of both temperature and different carbon sources. L. creatinivorum exhibited the highest lipogenic performances
    • …
    corecore