227 research outputs found

    Radiocarbon Date List XI: Radiocarbon Dates from Marine Sediment Cores of the Iceland, Greenland, and Northeast Canadian Arctic Shelves and Nares Strait

    Full text link
    Radiocarbon Date List XI contains an annotated listing of 178 AMS radiocarbon dates on samples from marine (169 samples) and lake (9 samples) sediment cores. Marine sediment cores, from which the samples for dating were taken, were collected on the Greenland Shelf, Baffin Bay, and the Eastern Canadian Arctic shelf. About 80% of the marine samples for dating were collected on the SW to N Icelandic shelf. The lake sediment cores were collected in northwestern Iceland. For dating of the marine samples, we submitted molluscs (117 samples), benthic and planktic foraminifera (45 samples), plant macrofauna (3 samples), and one serpulid worm. For dating of the lake cores, we submitted wood (8 samples) and one peat sample. The Conventional Radiocarbon Ages range from 294±9114C yr BP to 34,600±640 14C yr BP. The dates have been used to address a variety of research questions. The dates constrain the timing of high northern latitude late Quaternary environmental fluctuations, which include glacier extent, sea level history, isostatic rebound, sediment input, and ocean circulation. The dates also allowed assessment of the accuracy of commonly used reservoir correction. The samples were submitted by INSTAAR and affiliated researchers

    Kinematic Analysis of the 2020 Elliot Creek Landslide, British Columbia, Using Remote Sensing Data

    Get PDF
    The 2020 Elliot Creek landslide-tsunami-flood cascade originated from an 18.3 Mm3 rock slope failure in quartz diorite bedrock in a valley undergoing rapid glacial retreat. We used airborne LiDAR and optical imagery to characterize the slope and its surroundings. Using the LiDAR, we determined that two rockslides (2020 and an older undated one) occurred on this slope and shared a common basal rupture surface. We mapped two main sets of lineaments that represent structures that controlled the orientation of the lateral and rear release surfaces. Analysis of the topographic profile indicates a wedge-shaped failure block and a stepped rupture surface. Further topographic profile analysis indicates the possibility of a structurally controlled geomorphic step in the valley that corresponds with a change in the orientation of the valley. The rapid retreat of the West Grenville Glacier and the positions of the rupture surfaces suggest glacial retreat played a role in the landslides

    The glacial geomorphology of the Lago Buenos Aires and Lago Pueyrredón ice lobes of central Patagonia

    Get PDF
    <p>This paper presents a glacial geomorphological map of landforms produced by the Lago General Carrera–Buenos Aires and Lago Cochrane–Pueyrredón ice lobes of the former Patagonian Ice Sheet. Over 35,000 landforms were digitized into a Geographical Information System from high-resolution (<15 m) satellite imagery, supported by field mapping. The map illustrates a rich suite of ice-marginal glacigenic, subglacial, glaciofluvial and glaciolacustrine landforms, many of which have not been mapped previously (e.g. hummocky terrain, till eskers, eskers). The map reveals two principal landform assemblages in the central Patagonian landscape: (i) an assemblage of nested latero-frontal moraine arcs, outwash plains or corridors, and inset hummocky terrain, till eskers and eskers, which formed when major ice lobes occupied positions on the Argentine steppe; and (ii) a lake-terminating system, dominated by the formation of glaciolacustrine landforms (deltas, shorelines) and localized ice-contact glaciofluvial features (e.g. outwash fans), which prevailed during deglaciation.</p

    Accelerating glacier volume loss on Juneau icefield driven by hypsometry and melt-accelerating feedbacks

    Get PDF
    Globally, glaciers and icefields contribute significantly to sea level rise. Here we show that ice loss from Juneau Icefield, a plateau icefield in Alaska, accelerated after 2005 AD. Rates of area shrinkage were 5 times faster from 2015–2019 than from 1979–1990. Glacier volume loss remained fairly consistent (0.65–1.01 km3 a−1) from 1770–1979 AD, rising to 3.08–3.72 km3 a−1 from 1979–2010, and then doubling after 2010 AD, reaching 5.91 ± 0.80 km3 a−1 (2010–2020). Thinning has become pervasive across the icefield plateau since 2005, accompanied by glacier recession and fragmentation. Rising equilibrium line altitudes and increasing ablation across the plateau has driven a series of hypsometrically controlled melt-accelerating feedbacks and resulted in the observed acceleration in mass loss. As glacier thinning on the plateau continues, a mass balance-elevation feedback is likely to inhibit future glacier regrowth, potentially pushing glaciers beyond a dynamic tipping point

    Reply to comments by Bourgois et al. (2019) on: “Glacial lake evolution and Atlantic-Pacific drainage reversals during deglaciation of the Patagonia Ice Sheet”

    Get PDF
    We welcome the comments of Bourgois et al. (2019) and the opportunity to debate geomorphology, geochronology and palaeoclimate during the Late Glacial Interglacial Transition (LGIT, ~18.0-8.0 ka) in the region of the Río Baker, central Patagonia. Bourgois et al. (2019) conclude that we have propagated inconsistencies in our proposed reconstruction of palaeolake evolution due to geomorphic analytical bias. However, in our view the empirical geomorphological data we have compiled over many field seasons has resulted in a data-rich (though still incomplete) relative chronology that enables us to evaluate inconsistencies in landscape interpretations from previously published geochronological datasets. We would argue that a geochronological bias, over any geomorphological bias, has represented the main reason for multiple landscape interpretations in this region. Indeed, the conflicting palaeolake evolution models published for the Río Baker basin (Turner et al. 2005; Bell, 2008; Hein et al., 2010; Bourgois et al., 2016; Glasser et al., 2016; Martinod et al., 2016) was a major impetus for our paper. These contrasting models were in part a result of the coincident publication of two separate geochronological datasets in 2016, one focused on optically stimulated luminescence (OSL) dating of palaeolake landforms (Glasser et al., 2016), the other cosmogenic nuclide exposure ages (Bourgois et al., 2016). Both datasets provided updates on what we termed the Turner/Hein model in Thorndycraft et al. (2019), but as they did not have access to each other’s datasets they ended up with different landscape interpretations

    A Study of T Cell Tolerance to the Tumor-Associated Antigen MDM2: Cytokines Can Restore Antigen Responsiveness, but Not High Avidity T Cell Function

    Get PDF
    BACKGROUND: Most tumor-associated antigens (TAA) currently used for immunotherapy of cancer are also expressed in normal tissues, which may induce tolerance and impair T cell-mediated immunity. However, there is limited information about how physiological expression in normal tissues alters the function of TAA-specific T cells. METHODOLOGY/PRINCIPAL FINDINGS: We used a T cell receptor transgenic model to study how MDM2 expression in normal tissues affects the function of T cells specific for this TAA that is found at high levels in many different types of tumors. We found that some MDM2-specific T cells escaped thymic deletion and persisted in the peripheral T cell pool. When stimulated with antigen, these T cells readily initiated cell division but failed to proliferate and expand, which was associated with a high rate of apoptosis. Both IL-2 and IL-15 efficiently rescued T cell survival and antigen-specific T cell proliferation, while IL-7 and IL-21 were ineffective. Antigen-stimulated T cells showed impaired expression of the effector molecules CD43, granzyme-B and IFN-γ, a defect that was completely restored when T cells were stimulated in the presence of IL-2. In contrast, IL-15 and IL-21 only restored the expression of CD43 and granzyme-B, but not IFN-γ production. Finally, peptide titration experiments with IL-2 rescued T cells indicated that they were of lower avidity than non-tolerant control T cells expressing the same TCR. CONCLUSIONS/SIGNIFICANCE: These data indicate that cytokines can rescue the antigen-specific proliferation and effector function of MDM2-specific T cells, although this does not lead to the recovery of high avidity T cell function. This study sheds light on possible limitations of immunotherapy approaches that target widely expressed TAA, such as MDM2

    Chronostratigraphic Framework for the IODP Expedition 318 Cores from the Wilkes Land Margin: Constraints for Paleoceanographic Reconstruction

    Get PDF
    [1] The Integrated Ocean Drilling Program Expedition 318 to the Wilkes Land margin of Antarctica recovered a sedimentary succession ranging in age from lower Eocene to the Holocene. Excellent stratigraphic control is key to understanding the timing of paleoceanographic events through critical climate intervals. Drill sites recovered the lower and middle Eocene, nearly the entire Oligocene, the Miocene from about 17 Ma, the entire Pliocene and much of the Pleistocene. The paleomagnetic properties are generally suitable for magnetostratigraphic interpretation, with well‐behaved demagnetization diagrams, uniform distribution of declinations, and a clear separation into two inclination modes. Although the sequences were discontinuously recovered with many gaps due to coring, and there are hiatuses from sedimentary and tectonic processes, the magnetostratigraphic patterns are in general readily interpretable. Our interpretations are integrated with the diatom, radiolarian, calcareous nannofossils and dinoflagellate cyst (dinocyst) biostratigraphy. The magnetostratigraphy significantly improves the resolution of the chronostratigraphy, particularly in intervals with poor biostratigraphic control. However, Southern Ocean records with reliable magnetostratigraphies are notably scarce, and the data reported here provide an opportunity for improved calibration of the biostratigraphic records. In particular, we provide a rare magnetostratigraphic calibration for dinocyst biostratigraphy in the Paleogene and a substantially improved diatom calibration for the Pliocene. This paper presents the stratigraphic framework for future paleoceanographic proxy records which are being developed for the Wilkes Land margin cores. It further provides tight constraints on the duration of regional hiatuses inferred from seismic surveys of the region

    Relative sea-level rise around East Antarctica during Oligocene glaciation

    Get PDF
    During the middle and late Eocene (∼48-34 Myr ago), the Earth's climate cooled and an ice sheet built up on Antarctica. The stepwise expansion of ice on Antarcticainduced crustal deformation and gravitational perturbations around the continent. Close to the ice sheet, sea level rosedespite an overall reduction in the mass of the ocean caused by the transfer of water to the ice sheet. Here we identify the crustal response to ice-sheet growth by forcing a glacial-hydro isostatic adjustment model with an Antarctic ice-sheet model. We find that the shelf areas around East Antarctica first shoaled as upper mantle material upwelled and a peripheral forebulge developed. The inner shelf subsequently subsided as lithosphere flexure extended outwards from the ice-sheet margins. Consequently the coasts experienced a progressive relative sea-level rise. Our analysis of sediment cores from the vicinity of the Antarctic ice sheet are in agreement with the spatial patterns of relative sea-level change indicated by our simulations. Our results are consistent with the suggestion that near-field processes such as local sea-level change influence the equilibrium state obtained by an icesheet grounding line
    corecore