99 research outputs found

    Simulated families: A test for different methods of family identification

    Get PDF
    A set of families generated in fictitious impact events (leading to a wide range of 'structure' in the orbital element space have been superimposed to various backgrounds of different densities in order to investigate the efficiency and the limitations of the methods used by Zappala et al. (1990) and by Bendjoya et al. (1990) for identifying asteroid families. In addition, an evaluation of the expected interlopers at different significance levels and the possibility of improving the definition of the level of maximum significant of a given family were analyzed

    C2PU: 1-Meter Telescopes for the GAIA-FUN

    Get PDF
    3 p.International audienceC2PU stands in french for "Centre Pédagogique Planète Univers" (Planet and Universe Pedagogic Center). It is a project both for pedagogic and research purposes. It relies on the renewal of two 1-meter diameter telescopes. These two telescopes were earlier coupled as part of an interferometric instrument called SOIRDETE (for "Synthèse d'Ouverture en Infra Rouge avec DEux Telescopes"), described in Rabbia et al. 1990

    The close-in companion of the fast rotating Be star Achernar

    Get PDF
    Accepted for publication as an A&A LetterContext: Be stars are massive dwarf or subgiant stars that present temporary emission lines in their spectrum, and particularly in the Halpha line. The mechanism triggering these Be episodes is currently unknown, but binarity could play an important role. Aims: Previous observations with the VLT/VISIR instrument (Kervella & Domiciano de Souza 2007) revealed a faint companion to Achernar, the brightest Be star in the sky. The present observations are intended to characterize the physical nature of this object. Methods: We obtained near-IR images and an H-band spectrum of Achernar B using the VLT/NACO adaptive optics systems. Results: Our images clearly show the displacement of Achernar B over a portion of its orbit around Achernar A. Although these data are insuficient to derive the orbital parameters, they indicate a period of the order of 15 yr. The projected angular separation of the two objects in December 2007 was smaller than 0.15 arcsec, or 6.7 AU at the distance of Achernar. Conclusions: From its flux distribution in the near- and thermal-IR, Achernar B is most likely an A1V-A3V star. Its orbital period appears similar to the observed pseudo-periodicity of the Be phenomenon of Achernar. This indicates that an interaction between A and B at periastron could be the trigger of the Be episodes

    Diameter and photospheric structures of Canopus from AMBER/VLTI interferometry

    Get PDF
    International audience% Context {Direct measurements of fundamental parameters and photospheric structures of post-main-sequence intermediate-mass stars are required for a deeper understanding of their evolution. } % Aims {Based on near-IR long-baseline interferometry we aim to resolve the stellar surface of the F0 supergiant star Canopus, and to precisely measure its angular diameter and related physical parameters.} % Methods {We used the AMBER/VLTI instrument to record interferometric data on Canopus: visibilities and closure phases in the H and K bands with a spectral resolution of 35. The available baselines (60110\simeq60-110~m) and the high quality of the AMBER/VLTI observations allowed us to measure fringe visibilities as far as in the third visibility lobe.} % Results {We determined an angular diameter of \diameter=6.93\pm0.15~mas by adopting a linearly limb-darkened disk model. From this angular diameter and Hipparcos distance we derived a stellar radius R=71.4\pm4.0 R_{\sun}. Depending on bolometric fluxes existing in the literature, the measured \diameter provides two estimates of the effective temperature: Teff=7284±107T_\mathrm{eff}= 7284\pm107~K and Teff=7582±252T_\mathrm{eff}= 7582\pm252 ~K.} % Conclusions {In addition to providing the most precise angular diameter obtained to date, the AMBER interferometric data point towards additional photospheric structures on Canopus beyond the limb-darkened model alone. A promising explanation for such surface structures is the presence of convection cells. We checked such a hypothesis using first order star-cell models and concluded that the AMBER observations are compatible with the presence of surface convective structures. This direct detection of convective cells on Canopus from interferometry can provide strong constraints to radiation-hydrodynamics models of photospheres of F-type supergiant

    Evidence of an asymmetrical Keplerian disk in the Br{\gamma} and He I emission lines around the Be star HD 110432

    Get PDF
    Context. HD 110432 was classified as a "\gamma Cas X-ray analog" since it has similar peculiar X-ray and optical characteristics, i.e. a hard-thermal X-ray variable emission and an optical spectrum affected by an extensive disk. Lopes de Oliveira et al. (2007) suggest that it might be a Be star harboring an accreting white dwarf or that the X-rays may come from an interaction between the surface of the star and its disk. Aims. To investigate the disk around this Be star we used the VLTI/AMBER instrument, which combines high spectral (R=12000) and high spatial (\theta min =4 mas) resolutions. Methods. We constrain the geometry and kinematics of its circumstellar disk from the highest spatial resolution ever achieved on this star. Results. We obtain a disk extension in the Br{\gamma} line of 10.2 D\ast and 7.8 D\ast in the He I line at 2.05 \mu m assuming a Gaussian disk model. The disk is clearly following a Keplerian rotation. We obtained an inclination angle of 55\degree, and the star is a nearly critical rotator with Vrot /Vc =1.00±\pm0.2. This inclination is greater than the value found for \gamma Cas (about 42\degree, Stee et al. 2012), and is consistent with the inference from optical Fe II emission profiles by Smith & Balona (2006) that the inclination should be more than the \gamma Cas value. In the near-IR continuum, the disk of HD 110432 is 3 times larger than \gamma Cas's disk. We have no direct evidence of a companion around HD 110432, but it seems that we have a clear signature for disk inhomogeneities as detected for {\zeta} Tau. This asymmetrical disk detection may be interpreted within the one-armed oscillation viscous disk framework. Another finding is that the disk size in the near-IR is similar to other Be stars with different spectral types and thus may be independent of the stellar parameters, as found for classical Be stars.Comment: 9 page

    Apodized Lyot Coronagraph for VLT-SPHERE: Laboratory tests and performances of a first prototype in the visible

    Full text link
    We present some of the High Dynamic Range Imaging activities developed around the coronagraphic test-bench of the Laboratoire A. H. Fizeau (Nice). They concern research and development of an Apodized Lyot Coronagraph (ALC) for the VLT-SPHERE instrument and experimental results from our testbed working in the visible domain. We determined by numerical simulations the specifications of the apodizing filter and searched the best technological process to manufacture it. We present the results of the experimental tests on the first apodizer prototype in the visible and the resulting ALC nulling performances. The tests concern particularly the apodizer characterization (average transmission radial profile, global reflectivity and transmittivity in the visible), ALC nulling performances compared with expectations, sensitivity of the ALC performances to misalignments of its components

    Unusual polarimetric properties for interstellar comet 2I/Borisov

    Get PDF
    So far, only two interstellar objects have been observed within our Solar System. While the first one, 1I/‘Oumuamua, had asteroidal characteristics, the second one, 2I/Borisov, showed clear evidence of cometary activity. We performed polarimetric observations of comet 2I/Borisov using the European Southern Observatory Very Large Telescope to derive the physical characteristics of its coma dust particles. Here we show that the polarization of 2I/Borisov is higher than what is typically measured for Solar System comets. This feature distinguishes 2I/Borisov from dynamically evolved objects such as Jupiter-family and all short- and long-period comets in our Solar System. The only object with similar polarimetric properties as 2I/Borisov is comet C/1995 O1 (Hale-Bopp), an object that is believed to have approached the Sun only once before its apparition in 1997. Unlike Hale-Bopp and many other comets, though, comet 2I/Borisov shows a polarimetrically homogeneous coma, suggesting that it is an even more pristine object.This work is based on observations made with ESO Telescopes at the La Silla Paranal Observatory thanks to Director Discretionary Time under programme ID 2104.C-5003. The work of T.S.-R. was carried out through grant APOSTD/2019/046 by Generalitat Valenciana (Spain). This work was supported by the MINECO (Spanish Ministry of Economy) through grant RTI2018-095076-B-C21 (MINECO/FEDER, UE)
    corecore