661 research outputs found

    Non-Hermitian extension of gauge theories and implications for neutrino physics

    Get PDF
    An extension of QED is considered in which the Dirac fermion has both Hermitian and anti-Hermitian mass terms, as well as both vector and axial-vector couplings to the gauge field. Gauge invariance is restored when the Hermitian and anti-Hermitian masses are of equal magnitude, and the theory reduces to that of a single massless Weyl fermion. An analogous non-Hermitian Yukawa theory is considered, and it is shown that this model can explain the smallness of the light-neutrino masses and provide an additional source of leptonic CP violation.Comment: 23 pages, 1 figure, JHEP style; corrections to match published versio

    On the consistency of a non-Hermitian Yukawa interaction

    Full text link
    We study different properties of an anti-Hermitian Yukawa interaction, motivated by a scenario of radiative anomalous generation of masses for the right-handed sterile neutrinos. The model, involving either a pseudo-scalar or a scalar, is consistent both at the classical and quantum levels, and particular attention is given to its properties under improper Lorentz transformations. The path integral is consistently defined with a Euclidean signature, and we discuss the energetics of the model, which show that no dynamical mass generation can occur, unless extra interactions are considered.Comment: 7 pages, comments adde

    Calculation of the Characteristic Functions of Anharmonic Oscillators

    Full text link
    The energy levels of quantum systems are determined by quantization conditions. For one-dimensional anharmonic oscillators, one can transform the Schrodinger equation into a Riccati form, i.e., in terms of the logarithmic derivative of the wave function. A perturbative expansion of the logarithmic derivative of the wave function can easily be obtained. The Bohr-Sommerfeld quantization condition can be expressed in terms of a contour integral around the poles of the logarithmic derivative. Its functional form is B_m(E,g) = n + 1/2, where B is a characteristic function of the anharmonic oscillator of degree m, E is the resonance energy, and g is the coupling constant. A recursive scheme can be devised which facilitates the evaluation of higher-order Wentzel-Kramers-Brioullin (WKB) approximants. The WKB expansion of the logarithmic derivative of the wave function has a cut in the tunneling region. The contour integral about the tunneling region yields the instanton action plus corrections, summarized in a second characteristic function A_m(E,g). The evaluation of A_m(E,g) by the method of asymptotic matching is discussed for the case of the cubic oscillator of degree m=3.Comment: 11 pages, LaTeX; three further typographical errors correcte

    Foldy-Wouthuysen transformation for non-Hermitian Hamiltonians

    Get PDF
    Two Non-Hermitian fermion models are proposed and analyzed by using Foldy-Wouthuysen transformations. One model has Lorentz symmetry breaking and the other has a non-Hermitian mass term. It is shown that each model has real energies in a given region of parameter space, where they have a locally conserved current

    Kaluza-Klein towers in warped spaces with metric singularities

    Full text link
    The version of the warp model that we proposed to explain the mass scale hierarchy has been extended by the introduction of one or more singularities in the metric. We restricted ourselves to a real massless scalar field supposed to propagate in a five dimensional bulk with the extradimension being compactified on a strip or on a circle. With the same emphasis on the hermiticity and commutativity properties of the Kakuza Klein operators, we have established all the allowed boundary conditions to be imposed on the fields. From them, for given positions of the singularities, one can deduce either mass eigenvalues building up a Kaluza Klein tower, or a tachyon, or a zero mass state. Assuming the Planck mass to be the high mass scale and by a choice, unique for all boundary conditions, of the major warp parameters, the low lying mass eigenvalues are of the order of the TeV, in this way explaining the mass scale hierarchy. In our model, the physical masses are related to the Kaluza Klein eigenvalues, depending on the location of the physical brane which is an arbitrary parameter of the model. Illustrative numerical calculations are given to visualize the structure of Kaluza Klein mass eigenvalue towers. Observation at high energy colliders like LHC of a mass tower with its characteristic structure would be the fingerprint of the model.Comment: 33 pages, 1 figur

    A nearly optimal algorithm to decompose binary forms

    Get PDF
    Accepted to JSCSymmetric tensor decomposition is an important problem with applications in several areas for example signal processing, statistics, data analysis and computational neuroscience. It is equivalent to Waring's problem for homogeneous polynomials, that is to write a homogeneous polynomial in n variables of degree D as a sum of D-th powers of linear forms, using the minimal number of summands. This minimal number is called the rank of the polynomial/tensor. We focus on decomposing binary forms, a problem that corresponds to the decomposition of symmetric tensors of dimension 2 and order D. Under this formulation, the problem finds its roots in invariant theory where the decompositions are known as canonical forms. In this context many different algorithms were proposed. We introduce a superfast algorithm that improves the previous approaches with results from structured linear algebra. It achieves a softly linear arithmetic complexity bound. To the best of our knowledge, the previously known algorithms have at least quadratic complexity bounds. Our algorithm computes a symbolic decomposition in O(M(D)log(D))O(M(D) log(D)) arithmetic operations, where M(D)M(D) is the complexity of multiplying two polynomials of degree D. It is deterministic when the decomposition is unique. When the decomposition is not unique, our algorithm is randomized. We present a Monte Carlo version of it and we show how to modify it to a Las Vegas one, within the same complexity. From the symbolic decomposition, we approximate the terms of the decomposition with an error of 2−Δ2^{−Δ} , in O(Dlog2(D)(log2(D)+log(Δ)))O(D log^2(D) (log^2(D) + log(Δ))) arithmetic operations. We use results from Kaltofen and Yagati (1989) to bound the size of the representation of the coefficients involved in the decomposition and we bound the algebraic degree of the problem by min(rank, D − rank + 1). We show that this bound can be tight. When the input polynomial has integer coefficients, our algorithm performs, up to poly-logarithmic factors, Obit(Dℓ+D4+D3τ)O_{bit} (Dℓ + D^4 + D^3 τ) bit operations, where ττ is the maximum bitsize of the coefficients and 2−ℓ2^{−ℓ} is the relative error of the terms in the decomposition

    Multi-Instantons and Exact Results III: Unified Description of the Resonances of Even and Odd Anharmonic Oscillators

    Full text link
    This is the third article in a series of three papers on the resonance energy levels of anharmonic oscillators. Whereas the first two papers mainly dealt with double-well potentials and modifications thereof [see J. Zinn-Justin and U. D. Jentschura, Ann. Phys. (N.Y.) 313 (2004), pp. 197 and 269], we here focus on simple even and odd anharmonic oscillators for arbitrary magnitude and complex phase of the coupling parameter. A unification is achieved by the use of PT-symmetry inspired dispersion relations and generalized quantization conditions that include instanton configurations. Higher-order formulas are provided for the oscillators of degrees 3 to 8, which lead to subleading corrections to the leading factorial growth of the perturbative coefficients describing the resonance energies. Numerical results are provided, and higher-order terms are found to be numerically significant. The resonances are described by generalized expansions involving intertwined non-analytic exponentials, logarithmic terms and power series. Finally, we summarize spectral properties and dispersion relations of anharmonic oscillators, and their interconnections. The purpose is to look at one of the classic problems of quantum theory from a new perspective, through which we gain systematic access to the phenomenologically significant higher-order terms.Comment: 51 pages, LaTeX, Latin2 font

    Ladder Metamodeling & PLC Program Validation through Time Petri Nets

    Get PDF
    International audienceLadder Diagram (LD) is the most used programming language for Programmable Logical Controllers (PLCs). A PLC is a special purpose industrial computer used to automate industrial processes. Bugs in LD programs are very costly and sometimes are even a threat to human safety. We propose a model driven approach for formal verification of LD programs through model-checking. We provide a metamodel for a subset of the LD language. We define a time Petri net (TPN) semantics for LD programs through an ATL model transformation. Finally, we automatically generate behavioral properties over the LD models as LTL formulae which are then checked over the generated TPN using the model-checkers available in the Tina toolkit. We focus on race condition detection. This work is supported by the topcased project, part of the french cluster Aerospace Valley (granted by the french DGE), cf. http://www.topcased.or
    • 

    corecore