3,783 research outputs found

    High-resolution tracking in a GEM-Emulsion detector

    Full text link
    SHiP (Search for Hidden Particles) is a beam dump experiment proposed at the CERN SPS aiming at the observation of long lived particles very weakly coupled with ordinary matter mostly produced in the decay of charmed hadrons. The beam dump facility of SHiP is also a copious factory of neutrinos of all three kinds and therefore a dedicated neutrino detector is foreseen in the SHiP apparatus. The neutrino detector exploits the Emulsion Cloud Chamber technique with a modular structure, alternating walls of target units and planes of electronic detectors providing the time stamp to the event. GEM detectors are one of the possible choices for this task. This paper reports the results of the first exposure to a muon beam at CERN of a new hybrid chamber, obtained by coupling a GEM chamber and an emulsion detector. Thanks to the micrometric accuracy of the emulsion detector, the position resolution of the GEM chamber as a function of the particle inclination was evaluated in two configurations, with and without the magnetic fiel

    Status of the Cylindical-GEM project for the KLOE-2 Inner Tracker

    Full text link
    The status of the R&D on the Cylindrical-GEM (CGEM) detector foreseen as Inner Tracker for KLOE-2, the upgrade of the KLOE experiment at the DAFNE phi-factory, will be presented. The R&D includes several activities: i) the construction and complete characterization of the full-size CGEM prototype, equipped with 650 microns pitch 1-D longitudinal strips; ii) the study of the 2-D readout with XV patterned strips and operation in magnetic field (up to 1.5T), performed with small planar prototypes in a dedicated test at the H4-SPS beam facility; iii) the characterization of the single-mask GEM technology for the realization of large-area GEM foils.Comment: 4 pages, 10 figures, Presented at Vienna Conference on Instrumentation (Feb 15-20, 2010, Vienna, Austria). Submitted to the Proceeding

    The micro-RWELL layouts for high particle rate

    Full text link
    The μ\mu-RWELL is a single-amplification stage resistive Micro-Pattern Gaseous Detector (MPGD). The detector amplification element is realized with a single copper-clad polyimide foil micro-patterned with a blind hole (well) matrix and embedded in the readout PCB through a thin Diamond-Like-Carbon (DLC) sputtered resistive film. The introduction of the resistive layer, suppressing the transition from streamer to spark, allows to achieve large gains (\geq104^4) with a single amplification stage, while partially reducing the capability to stand high particle fluxes. The simplest resistive layout, designed for low-rate applications, is based on a single-resistive layer with edge grounding. At high particle fluxes this layout suffers of a non-uniform response. In order to get rid of such a limitation different current evacuation geometries have been designed. In this work we report the study of the performance of several high rate resistive layouts tested at the CERN H8-SpS and PSI π\piM1 beam test facilities. These layouts fulfill the requirements for the detectors at the HL-LHC and for the experiments at the next generation colliders FCC-ee/hh and CepC

    Performance of the Muon Identification at LHCb

    Full text link
    The performance of the muon identification in LHCb is extracted from data using muons and hadrons produced in J/\psi->\mu\mu, \Lambda->p\pi and D^{\star}->\pi D0(K\pi) decays. The muon identification procedure is based on the pattern of hits in the muon chambers. A momentum dependent binary requirement is used to reduce the probability of hadrons to be misidentified as muons to the level of 1%, keeping the muon efficiency in the range of 95-98%. As further refinement, a likelihood is built for the muon and non-muon hypotheses. Adding a requirement on this likelihood that provides a total muon efficiency at the level of 93%, the hadron misidentification rates are below 0.6%.Comment: 17 pages, 10 figure

    Production and performance of LHCb triple-GEM detectors equipped with the dedicated CARDIAC-GEM front-end electronics

    Get PDF
    The production of the triple-GEM detectors for the innermost region of the first muon station of the LHCb experiment has started in February 2006, and is foreseen to be completed by the end of July. The final design of the detector and the construction procedure and tools, as well as the quality controls are defined. The performances of each detector, composed by two triple-GEM chambers equipped with dedicated CARDIAC-GEM front-end electronics, are studied with a cosmic ray telescope. The cosmic ray telescope has been set up including all the final off-detector components

    Search for dark Higgsstrahlung in e+ e- -> mu+ mu- and missing energy events with the KLOE experiment

    Get PDF
    We searched for evidence of a Higgsstrahlung process in a secluded sector, leading to a final state with a dark photon U and a dark Higgs boson h', with the KLOE detector at DAFNE. We investigated the case of h' lighter than U, with U decaying into a muon pair and h' producing a missing energy signature. We found no evidence of the process and set upper limits to its parameters in the range 2m_mu<m_U<1000 MeV, m_h'<m_U.Comment: 16 pages, 7 figures, submitted to Physics Letters

    Limit on the production of a new vector boson in e+eUγ\mathrm{e^+ e^-}\rightarrow {\rm U}\gamma, Uπ+π\rightarrow \pi^+\pi^- with the KLOE experiment

    Get PDF
    The recent interest in a light gauge boson in the framework of an extra U(1) symmetry motivates searches in the mass range below 1 GeV. We present a search for such a particle, the dark photon, in e+eUγ{\rm e^+ e^-}\rightarrow {\rm U}\gamma, Uπ+π\rightarrow \pi^+\pi^- based on 28 million e+eπ+πγ\mathrm{e^+ e^-} \rightarrow \pi^+ \pi^-\gamma events collected at DAΦ\PhiNE by the KLOE experiment. The π+π\pi^+ \pi^- production by initial-state radiation compensates for a loss of sensitivity of previous KLOE Ue+e{\rm U} \rightarrow \mathrm{e^+ e^-}, μ+μ\mu^+\mu^- searches due to the small branching ratios in the ρω\rho-\omega resonance region. We found no evidence for a signal and set a limit at 90\% CL on the mixing strength between the photon and the dark photon, ε2\varepsilon^2, in the U mass range between 527527 and 987987~MeV. Above 700 MeV this new limit is more stringent than previous ones.Comment: 6 pages, 9 figures, 1 table, submitted to Phys. Lett.

    Measurement of the ϕπ0e+e\phi \to \pi^0 e^+e^- transition form factor with the KLOE detector

    Get PDF
    A measurement of the vector to pseudoscalar conversion decay ϕπ0e+e\phi \to \pi^0 e^+e^- with the KLOE experiment is presented. A sample of 9500\sim 9500 signal events was selected from a data set of 1.7 fb1^{-1} of e+ee^+e^- collisions at smϕ\sqrt{s} \sim m_{\phi} collected at the DAΦ\PhiNE e+ee^+e^- collider. These events were used to obtain the first measurement of the transition form factor Fϕπ0(q2)| F_{\phi \pi^0}(q^2) | and a new measurement of the branching ratio of the decay: BR(ϕπ0e+e)=(1.35±0.050.10+0.05)×105\rm{BR}\,(\phi \to \pi^0 e^+e^-) = (\,1.35 \pm 0.05^{\,\,+0.05}_{\,\,-0.10}\,) \times 10 ^{-5}. The result improves significantly on previous measurements and is in agreement with theoretical predictions.Comment: 13 pages, 4 figures; matches published versio
    corecore