126 research outputs found
Neuroserpin polymorphisms and stroke risk in a biracial population: the stroke prevention in young women study
<p>Abstract</p> <p>Background</p> <p>Neuroserpin, primarily localized to CNS neurons, inhibits the adverse effects of tissue-type plasminogen activator (tPA) on the neurovascular unit and has neuroprotective effects in animal models of ischemic stroke. We sought to evaluate the association of neuroserpin polymorphisms with risk for ischemic stroke among young women.</p> <p>Methods</p> <p>A population-based case-control study of stroke among women aged 15–49 identified 224 cases of first ischemic stroke (47.3% African-American) and 211 age-matched control subjects (43.1% African-American). Neuroserpin single nucleotide polymorphisms (SNPs) chosen through HapMap were genotyped in the study population and assessed for association with stroke.</p> <p>Results</p> <p>Of the five SNPs analyzed, the A allele (frequency; Caucasian = 0.56, African-American = 0.42) of SNP rs6797312 located in intron 1 was associated with stroke in an age-adjusted dominant model (AA and AT vs. TT) among Caucasians (OR = 2.05, p = 0.023) but not African-Americans (OR = 0.71, p = 0.387). Models adjusting for other risk factors strengthened the association. Race-specific haplotype analyses, inclusive of SNP rs6797312, again demonstrated significant associations with stroke among Caucasians only.</p> <p>Conclusion</p> <p>This study provides the first evidence that neuroserpin is associated with early-onset ischemic stroke among Caucasian women.</p
Principal component analysis of ensemble recordings reveals cell assemblies at high temporal resolution
Simultaneous recordings of many single neurons reveals unique insights into network processing spanning the timescale from single spikes to global oscillations. Neurons dynamically self-organize in subgroups of coactivated elements referred to as cell assemblies. Furthermore, these cell assemblies are reactivated, or replayed, preferentially during subsequent rest or sleep episodes, a proposed mechanism for memory trace consolidation. Here we employ Principal Component Analysis to isolate such patterns of neural activity. In addition, a measure is developed to quantify the similarity of instantaneous activity with a template pattern, and we derive theoretical distributions for the null hypothesis of no correlation between spike trains, allowing one to evaluate the statistical significance of instantaneous coactivations. Hence, when applied in an epoch different from the one where the patterns were identified, (e.g. subsequent sleep) this measure allows to identify times and intensities of reactivation. The distribution of this measure provides information on the dynamics of reactivation events: in sleep these occur as transients rather than as a continuous process
Disruption of plasmepsin-4 and merozoites surface protein-7 genes in Plasmodium berghei induces combined virulence-attenuated phenotype
Blood stage malaria parasites causing a mild and self limited infection in mice have
been obtained with either radiation or chemical mutagenesis showing the possibility
of developing an attenuated malaria vaccine. Targeted disruption of plasmepsin-4
(pm4) or the merozoite surface protein-7 (msp7) genes also induces
a virulence-attenuated phenotype in terms of absence of experimental cerebral
malaria (ECM), delayed increase of parasitemia and reduced mortality rate. The
decrease in virulence in parasites lacking either pm4 or msp7 is
however incomplete and dependent on the parasite and mouse strain combination. The
sequential disruption of both genes induced remarkable virulence-attenuated
blood-stage parasites characterized by a self-resolving infection with low levels of
parasitemia and no ECM. Furthermore, convalescent mice were protected against the
challenge with P. berghei or P. yoelii parasites for several months.
These observations provide a proof-of-concept step for the development of human
malaria vaccines based on genetically attenuated blood-stage parasites
Tissue plasminogen activator enhances the hypoxia/reoxygenation-induced impairment of the blood-brain barrier in a primary culture of rat brain endothelial cells.
Hemorrhagic transformation is a major complication associated with tissue plasminogen activator (tPA) therapy for ischemic stroke. We studied the effect of tPA on the blood-brain barrier (BBB) function with our in vitro monolayer model generated using rat brain microvascular endothelial cells subjected either to normoxia or to hypoxia/reoxygenation (H/R) with or without the administration of tPA. The barrier function was evaluated by the transendothelial electrical resistance (TEER), the permeability of sodium fluorescein and Evans\u27 blue-albumin (EBA), and the uptake of lucifer yellow (LY). The permeability of sodium fluorescein and EBA was used as an index of paracellular and transcellular transport, respectively. The administration of tPA increased the permeability of EBA and the uptake of LY under normoxia. It enhanced the increase in the permeability of both sodium fluorescein and EBA, the decrease in the TEER, and the disruption in the expression of ZO-1 under H/R conditions. Administration of tPA could cause an increase in the transcellular transport under normoxia, and both the transcellular and paracellular transport of the BBB under H/R conditions in vitro. Even in humans, tPA may lead to an opening of the BBB under non-ischemic conditions and have an additional effect on the ischemia-induced BBB disruption.The original publication is available at www.springerlink.co
Spatial Learning and Action Planning in a Prefrontal Cortical Network Model
The interplay between hippocampus and prefrontal cortex (PFC) is fundamental to
spatial cognition. Complementing hippocampal place coding, prefrontal
representations provide more abstract and hierarchically organized memories
suitable for decision making. We model a prefrontal network mediating
distributed information processing for spatial learning and action planning.
Specific connectivity and synaptic adaptation principles shape the recurrent
dynamics of the network arranged in cortical minicolumns. We show how the PFC
columnar organization is suitable for learning sparse topological-metrical
representations from redundant hippocampal inputs. The recurrent nature of the
network supports multilevel spatial processing, allowing structural features of
the environment to be encoded. An activation diffusion mechanism spreads the
neural activity through the column population leading to trajectory planning.
The model provides a functional framework for interpreting the activity of PFC
neurons recorded during navigation tasks. We illustrate the link from single
unit activity to behavioral responses. The results suggest plausible neural
mechanisms subserving the cognitive “insight” capability originally
attributed to rodents by Tolman & Honzik. Our time course analysis of neural
responses shows how the interaction between hippocampus and PFC can yield the
encoding of manifold information pertinent to spatial planning, including
prospective coding and distance-to-goal correlates
Neuronal Assembly Detection and Cell Membership Specification by Principal Component Analysis
In 1949, Donald Hebb postulated that assemblies of synchronously activated neurons are the elementary units of information processing in the brain. Despite being one of the most influential theories in neuroscience, Hebb's cell assembly hypothesis only started to become testable in the past two decades due to technological advances. However, while the technology for the simultaneous recording of large neuronal populations undergoes fast development, there is still a paucity of analytical methods that can properly detect and track the activity of cell assemblies. Here we describe a principal component-based method that is able to (1) identify all cell assemblies present in the neuronal population investigated, (2) determine the number of neurons involved in ensemble activity, (3) specify the precise identity of the neurons pertaining to each cell assembly, and (4) unravel the time course of the individual activity of multiple assemblies. Application of the method to multielectrode recordings of awake and behaving rats revealed that assemblies detected in the cerebral cortex and hippocampus typically contain overlapping neurons. The results indicate that the PCA method presented here is able to properly detect, track and specify neuronal assemblies, irrespective of overlapping membership
Dopamine acting at D1-like, D2-like and α1-adrenergic receptors differentially modulates theta and gamma oscillatory activity in primary motor cortex
The loss of dopamine (DA) in Parkinson’s is accompanied by the emergence of exaggerated theta and beta frequency neuronal oscillatory activity in the primary motor cortex (M1) and basal ganglia. DA replacement therapy or deep brain stimulation reduces the power of these oscillations and this is coincident with an improvement in motor performance implying a causal relationship. Here we provide in vitro evidence for the differential modulation of theta and gamma activity in M1 by DA acting at receptors exhibiting conventional and non-conventional DA pharmacology. Recording local field potentials in deep layer V of rat M1, co-application of carbachol (CCh, 5 μM) and kainic acid (KA, 150 nM) elicited simultaneous oscillations at a frequency of 6.49 ± 0.18 Hz (theta, n = 84) and 34.97 ± 0.39 Hz (gamma, n = 84). Bath application of DA resulted in a decrease in gamma power with no change in theta power. However, application of either the D1-like receptor agonist SKF38393 or the D2-like agonist quinpirole increased the power of both theta and gamma suggesting that the DA-mediated inhibition of oscillatory power is by action at other sites other than classical DA receptors. Application of amphetamine, which promotes endogenous amine neurotransmitter release, or the adrenergic α1-selective agonist phenylephrine mimicked the action of DA and reduced gamma power, a result unaffected by prior co-application of D1 and D2 receptor antagonists SCH23390 and sulpiride. Finally, application of the α1-adrenergic receptor antagonist prazosin blocked the action of DA on gamma power suggestive of interaction between α1 and DA receptors. These results show that DA mediates complex actions acting at dopamine D1-like and D2-like receptors, α1 adrenergic receptors and possibly DA/α1 heteromultimeric receptors to differentially modulate theta and gamma activity in M1
- …